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Abstract 

A natural way of viewing an inequality or a poverty measure is in terms of the vector 
distance between an actual (empirical) distribution of incomes and some appropriately 
normative distribution (reflecting a perfectly equal distribution of incomes, or a 
distribution with the smallest mean that is compatible with a complete absence of 
poverty). Real analysis offers a number of distance functions to choose from. In this 
paper, the employment of what in the literature is known as the Canberra distance 
function leads to an inequality measure in the tradition of the Bonferroni and Gini 
indices of inequality. The paper discusses some properties of the measure, and presents 
a graphical representation of inequality which shares commonalities with the well 
known Lorenz curve depiction of distributional inequality.  
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1 Introduction 

In this paper, I advance a measure of inequality which is very similar to the Bonferroni 
(1930) index, and also shares commonalities with the well-known Gini (1912) 
coefficient of inequality, and an attempt is made in the paper to flag the relevant links. 
The measure is derived, very simply, as a distance function, and since the specific 
distance function employed in the cause is the so-called Canberra function (see Lance 
and Williams 1967) the resulting index is called the ‘Canberra inequality measure’. 
Some features of the measure are discussed, with specific reference to the properties of 
decomposability and transfer-sensitivity. Also discussed is a graphical representation of 
inequality, analogous to the Lorenz and Bonferroni curves, which is here called the 
Canberra curve, from which the Canberra measure can be derived, just as the Gini 
coefficient can be derived from the Lorenz curve and the Bonferroni index from the 
Bonferroni curve (on which, see Barcena and Imedio 2000).  
 
At least four important contributions to reviving interest in, to interpreting, to 
characterizing, and to analyzing the properties of, the Bonferroni inequality measure are 
the papers by Barcena and Imedio (2000), Giorgi and Crescenzi (2001), Chakravarty 
(2007), and Imedio-Olmedo, Barcena-Martin and Parrado-Gallardo (2011). Also of 
relevance is a brief note by the present author (Subramanian 1989) which advanced 
what was called a ‘simple transfer-sensitive index of inequality’, in complete ignorance 
of the fact that the index in question was Bonferroni’s!   

2 Notation 

An ordered income n-vector is a list x of n non-negative incomes ),...,,...,( 1 ni xxx  
arranged in non-decreasing sequence (so that )1,...,1,0 1 −=≤≤ + nixx ii , where ix  is the 
income of the ith poorest person in a community of n individuals, n being a member of 
the set of positive integers N , with person 1 being the poorest individual and person n 
the richest. The set of all n-vectors is nX  and the set of all income distributions is 
represented by .nn XX N∈∪≡  For every Xx ∈ , the set of individuals whose incomes 
are represented in  x is designated by )(xN ,  the dimensionality of x by )(xn , and the 
mean of x by ∑

∈

≡
)(

))(/1()(
x

xx
Ni

ixnμ  . If R is the set of reals, then an inequality measure 

is a mapping R→X:I  such that, for every Xx ∈ , )(xI  is a unique real number that 
indicates the amount of inequality associated with the vector x. Given any Xx ∈ , we 

shall let ∑
=

≡
i

j
ji xi

1
)/1()(xμ  stand for the average income of those with incomes not 

exceeding the ith poorest person’s income; in the interests of convenience, if not 
correctness in the use of language, we shall also refer to )(xiμ as ‘person i’s mean 
income’, as in Subramanian (1989). (Notice that 11 )( x≡xμ  and )()( xx μμ ≡n .) For any 

Xx ∈ , we shall define two corresponding distinguished vectors (of the same 
dimensionality as x), given, respectively by, ))(),...,(( xxμx μμ≡  and  



 2

))(),...,((ˆ 1 xxμx nμμ≡ . Where there is no risk of ambiguity, we shall also write μ  for 
)(xμ , iμ  for )(xiμ , n  for )(xn , and so on. 

3 Poverty and inequality measures as distance functions  

Given any three vectors a, b and c in n-dimensional real space, the distance between the 
vectors a and b, represented as ),( baδ , is a  metric which satisfies the properties of 
non-negativity [namely, 0),( ≥baδ ], identity [namely, 0),( =aaδ ], symmetry [namely, 

),(),( abba δδ = ], and triangle inequality [namely ),(),(),( accbba δδδ ≥+ ]. Measures 
of poverty and inequality are essentially measures of distance—between empirical 
vectors of income and certain idealized vectors, such as vectors of ‘no poverty’, in the 
case of poverty measurement, and vectors of equal incomes, in the case of inequality 
measurement. Given any ordered n-vector of incomes x = ),...,,...,( 1 ni xxx  and the 
corresponding equally distributed vector of incomes ))(),...,(( xxμx μμ≡ , one can see 
that the distance between x and xμ , averaged over the number of individuals in the 
society )(xn , could legitimately be interpreted as a measure of inequality. For any two 
vectors x and y in n-dimensional real space, the Euclidean distance between the vectors 

is given by: 
2/1)(

1

2)(),( ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

x

yx
n

i
iiE yxδ . Note now that the well-known inequality 

measure yielded by the Standard Deviation (S) of incomes (
2/1)(

1

22/1 ))(())(/1( ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

x

xx
n

i
ixn μ ) is simply proportional to the Euclidean distance 

between the income vector x one is confronted by and its corresponding xμ  vector, viz. 
),())(/1()( xμxxx EnS δ= .  

 
Real analysis offers a number of distance functions to choose from—Wilson and 
Martinez (1997) provides a particularly useful review—and some of these have been 
employed in the economics measurement literature: Subramanian (2009), for instance, 
suggests a certain close correspondence between the well-known Foster-Greer-
Thorbecke (Foster et al. 1984) family of poverty measures and the class of Minkowski 
distance functions. Of relevance for the purposes of the present paper is the so-called 
‘Canberra distance function’, due to Lance and Williams (1967) (which has also been 
employed to derive a parametrized family of poverty indices in Subramanian 2009). 
Given any two vectors a and b in n-Euclidean space, the Canberra distance between the 
two vectors is defined as: 

(1) ∑
= +

−
=

N

i ii

ii
C ba

ba
1

),( baδ . 

 
It is the distance function featured above which will be employed, in what follows, to 
derive a variant—the Canberra index—of the Bonferroni inequality measure. 
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4 The Canberra inequality measure 

For any (ordered) income vector Xx ∈ , and the corresponding vectors xμ  and xμ̂  
defined in Section 2, we now define the Canberra Inequality Measure C  as the 
Canberra distance between the vectors xμ and xμ̂ , averaged across the n individuals 
constituting the society under review. For all Xx ∈ : 

(2) ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

==
)(

1 )()(
)()(

))(/1()ˆ,())(/1()(
x

xx xx
xx

xμμxx
n

i i

i
C nnC

μμ
μμδ . 

 
The (relative) Bonferroni Index—see, for example, Chakravarty (2007)—is given by: 
for all Xx ∈ , 

(3) ∑
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

)(

1 )(
)()(

))(/1()(
x

x
xx

xx
n

i

inB
μ

μμ
. 

 
As one can see from expressions (2) and (3), the Canberra index is a close relative of the 
Bonferroni Index, with the difference reflected in the additional term iμ  in the 
denominator in the square bracket on the right hand side of equation (2). One way of 
writing the Gini coefficient of inequality—see, for example, Sen (1973)—is the 
following: for all Xx ∈ , 

(4) ∑
=

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

)(

1
2 )1)((

)()(
2

)(
1)()(

x

x
xxx

xx
n

i
ixin

nn
nG

μ
. 

 
To see the link between the Canberra and Gini measures, it can be verified from 
equation (2) that, for all Xx ∈ , 

(5) ⎥
⎦

⎤
⎢
⎣

⎡
+++
++−

++
+++
++−

++
+
−

=
)...()()(
)...()()(

...
)...()(
)...()(

...
)(
)(

))(/1()(
1

1

1

1

1

1

n

n

i

i

xxn
xxn

xxi
xxi

x
x

nC
xx
xx

x
x

x
x

xx
μ
μ

μ
μ

μ
μ . 

 
It may be noted from expression (5) that the income level ix  is repeated )1( in −+  
times over, for every ni ,...,1= : this corresponds exactly with the Borda rank-order 
weighting scheme that is a distinctive feature of the Gini coefficient; and the ‘equity-
consciousnes’ of these indices is captured precisely in a system of diminishing weights, 
given by the income levels’ respective rank-orders, as one climbs up the income ladder.  
 
There is another way of interpreting the Canberra index, which involves invoking the 
notion of income-related relative deprivation (see Chakravarty, Chattopadhyay and 
Majumder 1995; Chakravarty 2007). Specifically, consider an income-recipient with 
income x , in a situation where the highest income in the distribution is x . Let )(xD be 
an indicator of the distribution-relative deprivation status of the person with income x . 
It seems reasonable to require that )(xD  should decline with x  and—if we are 
interested in equity-sensitivity—that )(xD  should decline with x  at an increasing rate. 
Further, in terms of a simple normalization requirement which ensures that the 
deprivation status of an individual is encompassed in the interval [ ]1,0 , we can demand 
that 1)0( =D  and 0)( =xD . Briefly, a reasonable perspective on how deprivation status 
might be expected to change with income would require the )(xD graph to be a 
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declining and strictly convex curve over the range [ ]1,0 , with 1)0( =D  and 0)( =xD , 
as featured in Figure 1. A specific deprivation function that satisfies these properties is 
what one may call the Canberra deprivation function, given by: 

[ ] [ ])(/)()( xxxDC μμμμ +−=  for all [ ]xx ,0∈ , where μ  is the mean of the 
distribution under study, and )(xμ  is the mean income of all recipients with incomes 
not exceeding x . Thus, given any ordered income n-vector ),...,,...,( 1 ni xxx=x , an 
inequality measure associated with the vector can be written as a simple average of all 

the individuals’ Canberra deprivation functions: ∑
=

=
)(

1

)())(/1()(
x

xx
n

i
i

C xDnI . I  is, 

precisely, the Canberra inequality measure C . 

Figure 1: The Canberra deprivation function 

 
Source: author’s illustration. 
 
The use of individual deprivation functions is reminiscent of one widely employed 
method of constructing poverty measures. It is customary, in the construction of poverty 
indices, to specify a poverty line z  as a level of income below which a person is 
considered impoverished; and given any Xx ∈ , if })({)( zxNiQ i <∈≡ xx and 

)(#)( xx Qq ≡ , then the deprivation status of an individual i , if i  is poor, is taken to be 
some increasing function of the shortfall of that person’s income from the poverty line 

))(,...,1( xqi = , and zero if the person is non-poor ))(,...,1)(( xx nqi += . A measure of 
poverty can then be taken to be a simple average of all individuals’ deprivation 
functions. Unsurprisingly, under certain well-defined limits, poverty measures are 
transformed into inequality measures: thus, and as is well known, when the poverty line 
z is replaced by the mean income μ  of a distribution, and when q is replaced by n ,  the 
Sen index of poverty becomes the Gini coefficient of inequality; the Watts index of 
poverty becomes one of Theil’s inequality measures; and one member of the Foster-
Greer-Thorbecke family of poverty measures becomes the squared coefficient of 
variation. The Bonferroni deprivation function has also been employed in the derivation 
of a poverty index, as has been demonstrated in Giorgi and Crescenzi (2001). 
 
Indeed, in a distance function approach to the construction of a poverty index, 
Subramanian (2009) suggests the following procedure. Given any ordered income n-
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vector Xx ∈= + ),...,,,...,( 11 nqq xxxx , one can define the associated n-vectors 
),...,,,...,( 1 zzxx q=xc  (which is what Takayama 1979 calls a ‘censored’ vector), 

),...,( zz=xz  (which is just a vector, of the same dimensionality as x, with the smallest 
mean that is compatible with a complete absence of poverty), and )0,...,0(=x0  (which 
is the vector representing maximal poverty, with every person receiving zero income). 
A normalized index of poverty );( zP x  can now be derived as the ratio of two vector 
distances: the distance between the vectors  xc  and xz  (which is the gap between the 
‘actual poverty situation’ and the ‘no poverty situation’) and the distance between the 
vectors x0  and xz (which is the gap between the ‘complete poverty situation’ and the 
‘no poverty situation’): ),(/),();( xxxx 0zczx δδ=zP . Equally, one may write a poverty 
index as: ),(/)ˆ,();( xx

c
xx 0zμzx δδ=zP , where c

xμ̂  is derived from xc  as the n-vector 
),...,,,...,( 1 zzqμμ . If the distance function employed is the Canberra distance function 

Cδ , then we obtain the poverty index ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

=
)(

1 )(
)(

))(/1();(
x

x
x

xx
q

i i

iC

z
z

nzP
μ
μ

. The 

superscript C  on P  stands for ‘Canberra’, and the ‘Canberra’ poverty measure is 
analogous to the ‘Bonferroni’ poverty measure derived by Giorgi and Crescenzi (2001). 
When z  is replaced by )(xμ  and )(xq by )(xn  in the expression for  CP , we just 
recover—as we might expect—the Canberra inequality measure C . 
 
When all incomes are equal, the value of the Canberra inequality measure is zero; and 
when a single person appropriates the entire income, the measure assumes a value of 

nn /)1( − . It is easy to verify that the index satisfies the commonly advanced properties 
of transfer, symmetry, continuity, and scale and replication invariance. Of specific 
interest are the properties of sub-group decomposability and transfer-sensitivity, the first 
of which is violated by C , and the second is satisfied. This is elaborated on in the 
following two sections. 

5 Sub-group decomposability 

The measure C  cannot be expressed as an exact sum of a ‘within-group’ component 
and a ‘between-group’ component of inequality. The amenability of a poverty measure 
to such an additive split is what is commonly referred to as the property of sub-group 
decomposability. Indeed, the Canberra measure does not even satisfy the weaker 
property of sub-group consistency (see Shorrocks 1988), which requires that, other 
things equal, an increase in any one sub-group’s inequality should raise overall 
inequality. The following simple numerical example demonstrates this. Consider the 
two ordered 4-vectors of income )5,5,4,2(=x  and )5,5,5,2(=y . Assume that there are 
two groups 1 and 2, and that the sub-group vectors of income can be written as: 

)4,2(1 =x , )5,2(1 =y , and ),( 5522 == yx . Employing the expression for C  provided 
in equation (2), it can be verified that 1.0)( 1 =xC , 136.0)( 1 =yC , and 

0)()( 22 == yx CC : since sub-group 1’s inequality has gone up in y vis-à-vis x, with 
sub-group 2’s inequality level remaining unchanged, one should expect—by sub-group 
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consistency—that )()( xy CC > . However, and as can be easily checked, it turns out that 
)130.0)(()122.0)(( =<= xy CC : sub-group consistency is violated by C . 

 
C  violates sub-group consistency for the same reason that the Gini and Bonferroni 
indices violate the axiom, namely, via a violation of the property of ‘independence of 
irrelevant alternatives’, and—through that route—the property of ‘contraction 
consistency’ (see Sen 1973). Specifically, and as the numerical example we have 
employed demonstrates, when we focus on any particular sub-group, the incomes 
outside of that sub-group ought—if one sets store by sub-group consistency—to become 
‘irrelevant’ for an assessment of the sub-group’s inequality level; however, these 
incomes do become material in the case of the Canberra measure because as a result of 
the contraction from the whole group to a sub-group, both the group-specific means (the 

s'μ ) and the ‘truncated means’ (the si 'μ ) (could) change from what they were before 
the contraction. These changes amount to a violation of ‘the independence of irrelevant 
alternatives’, with a consequential violation of contraction consistency. The normative 
question however remains as to whether the incomes outside of the sub-group under 
consideration ought really to be treated as irrelevant alternatives such that the sub-group 
level of inequality must be seen to be independent of them (see Foster and Sen 1997). 
An implication of this is the following. Suppose the population is partitioned into K  
mutually exclusive and completely exhaustive sub-groups; that jμ  is the mean income 
of sub-group j and j

iμ  the mean income of the ith poorest person in sub-group j, whose 
members constitute the set jN  of individuals ),...,1( Kj = . For every },...,1{ Kj ∈ , let 

NN jj →:λ   be a one-to-one mapping such that the ith  poorest person in jN  is the 
same as the )(ijλ th poorest person in N , for every jNi ∈ . ‘Properly’ speaking, the 
Canberra inequality measure for the jth group ought to be written as: 

(6) ∑
∈

⎥
⎦

⎤
⎢
⎣

⎡
+
−

=
jNi

j
i

j

j
i

j
jj nC

μμ
μμ

)/1( . 

 
If, however, one believes that the relation of elements within each sub-group to the 
entire community is relevant to an assessment of sub-group inequality, then it would be 
legitimate to write the Canberra measure for sub-group j as in equation (7) below:  

(7) ∑
∈ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
=

j j

j

Ni i

ijj nC
)(

)()/1(ˆ
λ

λ

μμ
μμ

. 

 
Using equation (7), one can write the Canberra measure as an index that is 
decomposable after one fashion: 

(8) ∑
=

=
K

j

jj CnnC
1

ˆ)/( . 

 
Equation (8) reflects the sort of sub-group decomposition which Podder (1993) 
performs for the Gini coefficient of inequality, wherein sub-group income-ranks of 
individuals are replaced by the income-ranks of these same individuals in the overall 
vector of incomes. ‘Decomposability’, as in equation (8), is now interpreted in the same 
way in which the decomposability of a poverty measure is conventionally understood, 
namely as the ability to write the measure as a population share-weighted sum of sub-
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group poverty levels. (This enables one to identify the contribution of any particular 
sub-group to overall inequality: equation (8) suggests that the proportionate contribution 
of sub-group j  to aggregate inequality is CCnn jj /)ˆ)/(( ). This is not, of course, 
decomposability in the Theil (1967) sense of an exact additive sum of a ‘within-group’ 
and a ‘between-group’ component of inequality—but then, as Podder (1993: 263) 
sensibly observes: ‘… without questioning its usefulness, it can be contended that the 
Theil type of decomposition is not the only type of decomposition one can think of. If 
the general purpose is to get an idea of the contribution of each of the groups to total 
inequality … it is possible to think of other types of decomposition.’   

6 Transfer-sensitivity  

Transfer-sensitivity is the requirement that an inequality measure should be more 
sensitive to income transfers at the lower than at the upper end of an income 
distribution. There are alternative ways of giving expression to this property which 
Kolm (1976) called the ‘principle of diminishing transfers’. Under one version, a given 
income transfer between two individuals a fixed number of persons apart should have a 
greater effect on inequality the poorer the pair of persons involved in the transfer is; 
under another version, a given income transfer between two individuals a fixed income 
apart should have a greater effect on inequality the poorer the pair of persons involved 
in the transfer is (see Foster 1985). For our purposes, we shall define transfer-sensitivity 
under the constraint that the pair of individuals involved in the transfer are both a fixed 
population and a fixed income apart. The following definitions are in order. 
 
Given an ordered income n-vector ),...,,...,,...,( 1 nkj xxxx=x , a progressive rank-
preserving transfer of income between two persons k  and j  is one in which jk xx >  
and a transfer of 2/)( jk xx −≤Δ  takes place from k  to j . 
 
The Transfer Axiom requires that for any two  ordered income n-vectors  Xyx ∈, , if y  
has been derived from x  through a progressive rank-preserving transfer of income from 
some person k  to some person j , i.e. },{ kjixy ii ∉∀=  for some )(, xNkj ∈  
satisfying jkkkjj xxxyxy >Δ−=Δ+= ,,  and 2/)( jk xx −≤Δ , then ).()( xy II <  
 
Transfer-Sensitivity, as we define it, requires the following: For all ordered income n-
vectors Xwyx ∈,, , if y  is derived from x through a progressive rank-preserving 
transfer of income from some k  to some j , and w is derived from x  through a 
progressive rank-preserving transfer of income from some q  to some p , with 

0>≡−=− tpqjk , and 0>Δ≡−=− pqjk xxxx , then 
.0)()()()( >−>− wxyx IIII  

 
It is well known that the Gini coefficient violates transfer-sensitivity: so long as the area 
enclosed by the Lorenz cure and the diagonal of the unit square in which the curve is 
drawn is the same for any intersecting pair of Lorenz curves, the value of the Gini 
coefficient will be the same for both distributions, irrespective of whether the Lorenz 
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curve bulges at the top or at the bottom of the distribution. The Bonferroni index, 
however, is transfer-sensitive (see Chakravarty 2007). So is the Canberra measure. 
 
To see this, imagine that the antecedents in the statement of the Transfer-Sensitivity 
Axiom have been satisfied for some triple of n-vectors of income Xwyx ∈,, .Then, it 
can be verified that, if μ  is the common mean shared by the three distributions, 

(9) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ++−++
++

Δ+++
Δ=−

−+−+ }))(1){((
1...

})(){(
1)/2()()(

11 tjtjjj tjj
nCC

μμμμμμμμ
μyx  

 
and 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ++−++
++

Δ+++
Δ=−

−+−+ }))(1){((
1...

})(){(
1)/2()()()10(

11 tptppp tpp
nCC

μμμμμμμμ
μwx

 
Since the right hand sides of equations (9) and (10) are positive, the Transfer axiom is 
verified. Further, and since pj < and the truncated means are arranged in non-
descending order, it follows that }))(){(/(1 Δ++++ ++ ijij ij μμμμ  > 

}))(){(/(1 Δ++++ ++ ipip ip μμμμ }1,...,1,0{ −∈∀ ti ,  which is sufficient to verify that 
C  satisfies transfer-sensitivity. 
 
If transfer-sensitivity is regarded as an appealing property, then the Bonferroni and 
Canberra measures score over the Gini coefficient in this respect. 

7 The Canberra curve 

Given any ordered n-vector of incomes Xx ∈ , we know that the Lorenz curve is 
defined by the relationship 

(11) ∑
=

=
i

j
jxnniL

1
)/1()/;( μx . 

 
Similarly, we can define the Canberra curve in terms of the following relationship: 

(12) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
+

−
=

∑
∑

=

=

i

i
i

j j

i

j j

nxni

nxni
niR

μμ
μμ

μ

μ

1

1

)/()/(

)/()/(
)/;(x . 

 

If we designate ni /  by iP  and ∑
=

i

j
jxn

1
)/1( μ  by iL , then  iL  is  the cumulative income 

share of the poorest iP th fraction of the population, and the plot of iL  against iP   is just 

the Lorenz curve. In like fashion, if we designate  
∑
∑

=

=

+

−
i

j j

i

j j

nxni

nxni

1

1

)/()/(

)/()/(

μ

μ
 by iR , then we 

can see from (12) that the Canberra curve is obtained by plotting the points 
)/()( iiiii LPLPR +−≡  against the points iP  ( ),...,1 ni = . The curve can be drawn 
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within the unit square as a non-increasing graph from )1,0(  to )0,1(  of the square. For 
an illustrative numerical example, consider the ordered 5-vector )41,24,20,15,10(=x  
whose mean μ  is 22. The co-ordinates of the Canberra curve for the distribution x  can 
be derived as in the last two columns of the following table: 

Co-ordinates of the Canberra curve for the vector )41,24,20,15,10(=x  

i  
ix  iμ  iμμ −  iμμ +  ≡iP ni /  

i

i
iR

μμ
μμ

+
−

≡

1 10 10 12 32 0.2 0.38 
2 15 12.5 9.5 34.5 0.4 0.28 
3 20 15 7 37 0.6 0.19 
4 24 17.25 4.75 39.25 0.8 0.12 
5 41 22 0 44 1.0 0 
 
A plot of the iR  against the iP  presented in the last two columns of the table above 
yields the Canberra curve as a step function—see Figure 2. It is easy to see that the area 
beneath the Canberra curve is just the value of the Canberra measure of inequality. One 
can also see that as n becomes large, the Canberra curve can be approximated by a 
continuous curve obtained by connecting the plotted points of the curve with ‘piece-
wise’ linear segments. Two examples of possible Canberra curves are presented in 
Figure 3. One curve lies everywhere below what Kakwani (1980) calls the ‘alternative 
diagonal’ drawn from )1,0(  to )0,1( of the unit square; the other curve lies everywhere 
above this diagonal.1 A relationship analogous to that of Lorenz dominance can be 
defined for the Canberra curve: for any two distributions Xyx ∈, , x  will be said to 
Canberra-dominate y , written yx Cf , if and only if the Canberra curve for x  lies 

somewhere below and nowhere above the Canberra curve for y . For all Xyx ∈, , if 
yx Cf , then one can say that x  displays unambiguously less inequality than y . In 

Figure 3, the strictly convex Canberra curve obviously dominates the strictly concave 
curve.  

                                                
1 It is straightforward that if the Canberra curve is uniformly convex, then it will lie everywhere below 
the alternative diagonal, while if it is uniformly concave, it will lie everywhere above the alternative 
diagonal. The area below the alternative diagonal is 0.5, which serves as a sort of benchmark: if the 
Canberra curve is uniformly convex, then the value of the Canberra measure is less than 0.5, and the other 
way around if the curve is uniformly concave. 
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Figure 2: A step-function Canberra curve drawn for the vector (10, 15, 20, 24, 41) 

 
Source: author’s illustration. 
 

Figure 3: Two examples of possible Canberra curves 

 
Source: author’s illustration. 
 
Finally, visual confirmation of the transfer-sensitivity of the Canberra measure is 
available from the following elementary numerical example. Suppose )50,40,30,20(=a
and that  x  and y  are derived from a  through, respectively, a transfer of 5 units of 
income from person 2 to person 1, and a transfer of 5 units from person 4 to person 3, so 
that )50,40,25,25(=x , )45,45,30,20(=y , and x  and y  share the same mean 35=μ . 



 11

The co-ordinates of both the Lorenz and the Canberra curves are derived in the tables 
following: 

Co-ordinates of the Lorenz and the Canberra curves for the vector )50,40,25,20(=x  

i  
ix  iμ  iμμ −  iμμ +  ≡iP

ni /  i

i
iR

μμ
μμ

+
−

≡  
≡iL

∑
=

i

j
jxn

1
)/1( μ

1 25 25 10 60 0.25 0.17 0.18 
2 25 25 10 60 0.50 0.17 0.36 
3 40 30 5 65 0.75 0.08 0.64 
4 50 35 0 70 1.00 0 1.00 

Co-ordinates of the Lorenz and the Canberra curves for the vector )45,45,30,20(=y  

i  
ix  iμ  iμμ −  iμμ +  ≡iP

ni /  i

i
iR

μμ
μμ

+
−

≡  
≡iL

∑
=

i

j
jxn

1
)/1( μ

1 20 20 15 55 0.25 0.27 0.14 
2 30 255 10 60 0.50 0.17 0.36 
3 45 31.67 3.33 66.67 0.75 0.05 0.68 
4 45 355 0.75 70 1.00 0 1.00 
 
From the step functions representing the Lorenz and the Canberra curves for the two 
distributions, one can see that the Gini coefficients are the same for both x  and y  (the 
area a  in Figure 4a is the same as  the area b ), while the Canberra measure is larger for 
y  than for x  (the area a  in Figure 4b is larger than the area b ). 

Figure 4a: Step-function Lorenz curves for the vectors x = (25, 25, 40, 50) and y = (20, 
30, 45, 45) 

 
Note: the Lorenz curve for y first lies below and then above the lorenz curve for x. 
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Source: author’s illustration. 
 

Figure 4b: Step-function Canberra curves for the vectors x = (25, 25, 40, 50) and y = 
(20, 30, 45, 45)  

 
Note: the Canberra curve for y first lies above and then below the Canberra Curve for x. 
Source: author’s illustration. 
 

8 Concluding observations 

This paper has been a variation on the theme of the Bonferroni inequality index, which 
has been subjected to rigorous analysis by, among others, Barcena and Imedio (2000), 
Giorgi and Crescenzi (2001), Chakravarty (2007), and Imedio-Olmedo et al. (2011). 
The possible novelty of the paper resides in the use of a distance function—the 
Canberra distance function, as it happens—as a natural approach to take in the 
measurement of both inequality and poverty. An application of the Canberra distance 
function to an assessment of inequality leads to a measure of disparity—here called the 
‘Canberra measure’—which turns out to be closely related to the Bonferroni index, and 
also to the Gini coefficient of inequality. A curve analogous to the Lorenz curve, and 
referred to as the Canberra curve in the paper, is derived and discussed.  
 
Also discussed are some properties of the Canberra inequality measure, with specific 
reference to the features of decomposability and transfer-sensitivity. The principal merit 
of the Canberra measure vis-à-vis the Gini coefficient is that, unlike the latter, it 
satisfies the property of transfer-sensitivity. The emphasis of the paper has been mainly 
on a simple and systematic derivation and presentation of an inequality measure with a 
known ancestry in two other distinguished measures. The paper is thus best viewed as 
an effort in consolidation and, it is hoped, useful exposition. 
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