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1 Introduction

Supply chain management includes the implementation of efficient policies related

to procurement of raw material, transforming them into semi-finished and finished

products and distributing them to the end customer, thereby transcending multiple

business units. Poor supply chain management (more often than not) predominantly

results in excessive amounts of inventory, the largest asset for many firms. Inventory

is generally carried by firms to hedge against uncertainty of different types (demand,

process and supply) as well as to account for economic efficiencies. The former are

managed with safety stocks (either in raw material or in finished goods), and the

latter through batches (lot sizes). Typically, both these types of inventories need to be

considered simultaneously, as one is affected by the other. Outside the manufacturing

floor, a major challenge that companies face relates to the management of safety stocks

rather than with the choice of economic lot-sizes. Thus, efficient coordination of the

supply chain relies heavily on how well the uncertainties related to demand, process

and supply are managed. Tactical planning is the setting of key operating targets

(such as safety stocks, planned lead times and batch sizes) across the different units

∗Invited chapter in the Handbook of OR/MS on Supply Chain Management edited by Graves
and de Kok. Comments are welcome.
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in a coordinated manner. These key operating targets then provide guidance as to

which day-to-day operations (either in manufacturing, logistics or procurement) can

be executed. While several software tools are available in the execution arena (using

the more mature area of deterministic mathematical programming), effective tactical

planning tools are yet to be fully developed.

Although it would be ideal from a research standpoint to develop large scale

integrated models consisting of multiple entities while trying to understand effective

supply chain practices, it is often very difficult (and in most cases impossible) to

get any useful insights from such large models because they are intractable. As a

result, researchers in the area of operations management over the past 50 years have

tried to develop insights on simpler models which could then be used as building

blocks to study more complex and real supply chains. The approach adopted has

been one where one decomposes a multi-level supply chain – such as an assembly or

a distribution system – and analyzes individual facilities with specific characteristics

under different conditions. Such models will be the main focus of this chapter. For

practical applications large scale models have been developed and implemented based

on these building blocks. Some of these papers will be briefly reviewed at the end of

this chapter (these are discussed in greater detail in chapter 14).

Before introducing the different parameters related to analysis of such models,

we will introduce three important notions related to the modelling and analysis that

differentiate supply chain models developed by researchers in the past. First is related

to the time granularity of the model, second to time horizon of the study and the

third related to performance measures. In terms of granularity, the model of analysis

of any inventory system (for single or multiple facility) could be based either on a

continuous basis or on a periodic basis. In models with continuous review (of inventory

and other parameters), the assumption is that demand occurs continuously with a

demand rate (units/time) that could be deterministic or stochastic, and costs that are

incurred every instant of time. In a periodic review setting (or discrete time models),

the assumptions are that demand occurs every period whose granularity could be

dependent on the actual environment (say a day, a week, a month or quarter). In

many real environments the review process is periodic; we will focus on such models
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called discrete-time models in this paper. Discrete time models can be developed for

a single period, multiple periods or for an infinite horizon. The performance measures

related to the analysis of discrete-time models could be single period costs, discounted

multi-period or infinite horizon costs or average costs over the infinite horizon (the

break-up of these costs will be explained later). Alternatively, for each horizon of

analysis, we may specify a service level requirement. Previous research oriented books

that have addressed supply chain models include Graves et. al. (1993), Tayur et. al.

(1998) and Zipkin (2000).

Once a complex multi-stage, multi-product supply chain has been decomposed

to its basic building block, we are left with single product, single stage (or facility)

models that interact with each other through upstream and downstream parameters.

The decomposition into a single product setting itself needs some care: for example,

if multiple products share a certain common capacity, or if there are fixed costs in

ordering a set of products, these interactions across products have to be accounted for.

Once decomposed, any single facility in a supply chain faces three types of parameters

– downstream parameters, upstream parameters and facility parameters.

• Downstream Parameters: Downstream parameters are those that depend

on – (1) actions of the facilities downstream (such as the customers); (2) the

way information obtained from downstream facilities is processed; (3) the con-

tractual relationship with downstream facilities. In developing a supply chain

model for a single facility, the main downstream parameters to be considered

are as follows.

– Demand Process: The demand that gets generated at any facility de-

pends on the operations and decisions of the downstream facilities (the

customers). Seldom do we find real environments where demand is de-

terministic because of the uncertainties in the business environment. As a

result, we will concentrate on models with stochastic demand. In a discrete

time setting, the simplest stochastic demand assumption is that it is i.i.d

(independent and identically distributed). This implies that in each pe-

riod the demand is independent from other periods but is generated from

the same distribution. Another (more realistic) related assumption is that
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of independent but non-identical demands in different periods also called

non-stationary distribution. Finally, the demand process can be modelled

in a more complex way in terms of being dependent as well as different

in each period (auto-correlated demands are discussed in greater detail in

chapter 8).

– Forecasts and Information: In many business environments, it is not pos-

sible to respond to the generated demand immediately (due to lead time

for production, supply and distribution as well as capacity constraints).

In such cases, the facility develops forecasts for demand in any period and

utilizes that to produce “enough” to match the requirements of demand.

Another way to predict the demand is to gain more information about the

ordering process at the downstream facility (which generates the demand)

or try to predict unknown parameters in the demand distribution using

the information about realized demand until then. These predictions are

utilized to develop the inventory policy for the facility.

– Contracts: Contracts with downstream facilities typically determine the

costs as well service that needs to be provided by the facility. Contracts dic-

tate whether late or partial shipments will be allowed as well as the penalty

cost for stocking-out or delaying the shipment. Multi-period discrete-time

models can be differentiated based on none, partial or complete backlog-

ging of demand. In the case of no backlogging (also called lost sales), the

firm loses all the demand that it fell short of in a given period whereas in

the complete backlogging case, the firm is allowed to ship the remaining

order in future periods (but has to incur the penalty). Other parameters in

the contract could be level of service (such as fill rate constraint), quality,

vendor managed inventory, end of life returns as well as delivery flexibility.

Supply chain models have been developed with the fundamental objective

of optimal contracts. For details see Lariviere (1998), Tsay et. al. (1998),

Cachon (2002) and Chen (2002).

• Upstream Parameters: Upstream parameters depend on the decisions of the

suppliers upstream related to their production process.
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– Lead Time: In most real environments, there are significant lead times

involved before the material ordered is obtained from the supplier. Some

suppliers are more reliable than others in that their lead times for fulfill-

ment are more accurate and do not vary a whole lot from period to period.

In extreme cases, suppliers may situate a hub near the facility in which

case the lead time is negligible and can be ignored. Supply chain models

can be developed with zero lead time, fixed deterministic lead time and

stochastic lead time. As will be noted later, many results related to zero

lead times can be extended to fixed deterministic lead times. It is also

quite common today to have dual lead times, either because of multiple

suppliers, or because there are multiple options on how to obtain material

from the same supplier.

– Yield: Yield refers to the percentage of requested order that got delivered

from the supplier. Generally, yield is modelled as a random number that

represents the fraction of the order that was satisfied. Additive models

of yield have also been developed. Clearly, both yield and the lead time

together determine the supply process. For example, a supplier may deliver

the products always in two weeks but may falter in terms of amount of

delivery. On the other hand, the supplier could be delivering the exact

quantities ordered but may be delivering them with different lead times.

• Facility Parameters: The performance of the facility among other factors

depends on the capacity available for production, the number of products pro-

duced, setup costs and variable costs associated with production, randomness

in the production process, and operational policies such as inventory decisions

as well as sequencing and scheduling.

– Capacity: Most real facilities have finite capacity for production in any

given period which can be increased to an extent through outsourcing on

a need basis. However, incorporating capacity in to a supply chain model

may make it more difficult to analyze. As a result, the earliest models

assumed infinite capacities in the process and more recent models have

incorporated finite fixed capacity in their analysis.
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– Costs: There are four types of costs associated with the production and

inventory at the facility. First there is a per unit production cost (or

variable cost of production). Second there could be a fixed cost associated

with production. This cost typically reflects the costs associated with

changing the setup of machines (equivalent of setup or changeover time).

Third there is a per unit holding cost that is charged to inventory remaining

at the facility at the end of the period. Finally, there may be a salvage cost

(usually negative) which represents the salvage value of the inventory at

the end of the horizon. These costs along with the the stock-out or penalty

cost described above comprise the total costs incurred by the facility.

– Product and Process Characteristics: The number of products that are

produced at the facility and their inter-relationships (complementary or

substitutes) affect the performance of the facility. Further, the process

characteristics such as yield influence the performance. As more product

and process characteristics are incorporated in a single model, it becomes

more difficult to obtain analytical insights. For most part of this paper,

we will discuss the base case with single product, neglecting the above

characteristics. However, we will discuss results related to some of the

above in section 5 on extensions.

– Operational Decisions: The fundamental decision in almost all supply

chain models relates to (1) how much inventory to stock in a given pe-

riod and (2) when to produce/order. All the models discussed in this

paper develop insights on these two fundamental questions. This is often

called the inventory policy or inventory ordering policy. The inventory

policy determines the operating performance of the facility. Clearly, the

scheduling of different products, their lot sizes and their sequence affects

the real performance in cases where there are multiple products. In most

of the discrete-time models (the focus of this paper) this aspect is typically

ignored.

In section 2, we present the notation that will used throughout the chapter. In

sections 3 and 4, we discuss models with the stationary and non-stationary demand
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respectively. In section 5, we discuss various extensions – multi-level systems, multi-

product systems, multiple suppliers, random yield and perishability of products. We

discuss industry applications in section 6 and conclude in section 7.

2 Notations Used

In this section we will provide a list of all notations used in this paper for ease of

reference.

• h: per unit holding cost incurred on inventory in a period;

• s: per unit salvage cost at the end of the horizon;

• π: per unit stock-out cost on demand not satisfied in a period;

• c: per unit production/ordering cost of the product;

• K: set-up cost for production/ordering;

• ξ: demand realized in a period;

• µ : mean value of ξ;

• σ: standard deviation of ξ;

• f, F : probability density and cumulative density functions for ξ.

• x: beginning inventory in a period;

• y: inventory level after an order has been placed;

• Jn(x): optimal cost to go with n periods remaining in the horizon with x units

on hand;

• G(y): expected one-period cost given the inventory level is y after ordering;

• α: discount rate 0 < α ≤ 1;

• δ(x): threshold function where δ(x) = 1 x > 0 and δ(0) = 0;

7



• C: capacity available in a period;

• l: lead time for supply in a period;

• pl: probability density for lead time from the supplier equal to l periods;

Any of the variables above with a subscript t (such as ξt or xt) represent the value

of the variable for the time period t. Similarly, any of the above variables with a ∗ in

the superscript (such as y∗) represent the optimal value.

3 Stationary and Independent Demand

Stationary and independent demand models assume that the demand ξ in every period

comes from i.i.d distribution. With the i.i.d assumption in demand, one typically

need not be concerned about the particular period t one is analyzing as well as the

demand history up to that period if other variables such as cost are also stationary.

This simplifies the analysis and as a result we will focus on these models first. Note

that an elaborate description and analysis of these models have appeared in earlier

handbooks edited by Heyman and Sobel (1984) and Graves et. al. (1993).

Year Reference Year Reference
1951 Arrow, Harris and Marschak 1971 Morton
1958 Karlin 1972 Wijngaard
1958 Karlin and Scarf 1979 Ehrhardt
1960 Scarf 1979 Nahmias
1963 Iglehart 1986ab Federgruen and Zipkin
1965b Veinott 1989 De Kok
1965 Veinott and Wagner 1991 Zheng
1966b Veinott 1991 Zheng and Federgruen
1970 Kaplan 1993 Tayur
1971 Porteus 1996 Van Donselaar, De Kok and Rutten

Table 1: Papers on the Base Case: Single Product Single Stage Stationary and Inde-
pendent Demand.
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3.1 Single Period

The single period stochastic inventory model deals with the problem of deciding how

much to order at the beginning of the period given that demand is uncertain and

there are penalty costs for lost demand and holding costs for excess inventory. This

problem is also called the news vendor problem because it mimics the issue faced

by a news vendor who needs to decide how many copies of a newspaper need to be

purchased at the beginning of the day given that for every copy that sells there is

a profit and every copy that remains at the end of the day there is a loss. Note

that in the following discussions we assume cost minimization to be the objective

(by assigning a penalty cost for lost demand); however, these problems can also be

studied as profit maximization problems.

To begin we will assume the simplest model where there are no salvage and setup

costs (s = 0, K = 0) as well as the lead time for delivery is zero. Let x be the starting

inventory at the facility, then the objective is to minimize the expected costs during

the period by producing/ordering enough to bring the inventory level to y ≥ x after

ordering. We further assume that −h < c < π. Then the single period expected cost

L(y, x) given x is

L(y, x) = c(y − x) + π
∫ ∞
y

(ξ − y)dF (ξ) + h
∫ y

0
(y − ξ)dF (ξ) (1)

The first term represents the ordering cost while the second and third terms rep-

resent the penalty and holding costs respectively.

Let G(y) be defined as follows

G(y) = cy + π
∫ ∞
y

(ξ − y)dF (ξ) + h
∫ y

0
(y − ξ)dF (ξ) = L(y, x) + cx (2)

It is clear that G(y) is convex in y. As a result, L(y, x) is convex in y. The optimal

value of the cost L∗ is obtained by setting the first derivative equal to 0 which gives

y∗ = F−1(
π − c
π + h

) = F−1(
π − c

(π − c) + (c+ h)
) (3)
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The ratio π−c
π+h

is called the critical fractile and the value of y∗ is called the base

stock level. Since it is optimal to order or produce up to an inventory level of y∗ at

the beginning of each period, such a policy is also called an order upto policy. An

order up to policy orders up to y∗ if x < y∗ and does not order anything if x ≥ y∗.

An important thing to notice about this policy is that the order up to level y∗ is

independent of the initial inventory. Another interesting point about (3) is that the

critical fractile can be written as a fraction of underage costs and overage + underage

costs where overage cost is the cost of having one additional unit than demanded

(c+h) and the underage cost is the cost having one less unit than demanded (π− c).
The above value of y∗ can also be computed by equating marginal benefits to marginal

costs as given in (4).

(π − c)(1− F (y)) = (c+ h)F (y) (4)

The difference between y∗ and µ (the average demand) is referred to as the buffer

stock. The earliest reference of this term (as indicated by Arrow et. al. 1958) appears

in Edgeworth (1888) within a banking context where the probability of running out

was pre-specified. Arrow, Harris and Marschak (1951) provide the first reference of

this model with underage and overage costs.

If the per unit salvage cost s is included in the model, then the overage cost is

equal to c + h + s and the critical fractile is adjusted accordingly. If the facility has

a production capacity of C units in the period, then the optimal policy is as follows.

y∗ =


F−1( π−c

π+h
) if x ≤ F−1( π−c

π+h
) ≤ x+ C

x+ C if x+ C ≤ F−1( π−c
π+h

)

x if x ≥ F−1( π−c
π+h

)
(5)

The policy given above is also termed as a modified base stock policy since the

policy tries to get as close to the base stock level when there is capacity constraint.

3.1.1 Setup Costs

In the above model one could include a setup cost K each time an order is placed (or

production initiated). The corresponding cost function is given by (for y ≥ x)
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L(y, x) = c(y−x)+Kδ(y−x)+π
∫ ∞
y

(ξ−y)dF (ξ)+h
∫ y

0
(y−ξ)dF (ξ) = G(y)+Kδ(y−x)−cx

(6)

We know that given that an order is going to be placed (y > x) the function L(y, x)

is convex in y since G(y) is convex in y and the value is minimized at y∗ = F−1( π−c
π+h

).

The associated cost is equal to G(y∗)+K−cx. Clearly if G(x)−cx ≤ G(y∗)+K−cx
or G(x) ≤ G(y∗) + K then it is not optimal to place an order. However, if G(x) >

G(y∗) +K then it is optimal to order to reach y∗. Thus, with the introduction of the

setup cost the optimal inventory policy has two parameters often referred to as (s, S)

policy where if x < s then the inventory level is brought to S and if x ≥ s then no

orders are placed. In the above policy S = y∗ and s ≤ S is chosen in such a way so

that G(s) = G(S) +K.

3.1.2 General Cost Assumptions

Thus far we have assumed that ordering, holding and shortage costs are linear. One

can also have other types of functions for these costs which are non-linear and maybe

concave or convex. Let us denote the holding, penalty and ordering cost functions as

ĥ, π̂ and ĉ respectively (for now we will neglect the salvage costs). Clearly, if ĥ and π̂

are convex then G(y) as defined in (2) is convex in y so one can find the optimal y∗.

The optimal y∗ will not be given by a simple critical fractile anymore. As indicated

in Porteus (1991), the case of quadratic holding and stock-out costs (defined on the

positive values of the argument) leads to an interesting result in that the optimal

inventory level is equal to mean µ when overage and underage costs are identical

under other standard assumptions. Note that this is different from the linear case

where we stock the median value when the underage and overage costs are equal.

If the holding and stock-out costs are non-linear and non-convex even then under

certain conditions the optimal y∗ can be found. Those conditions are that if G(y)

can be written as G(y) = A+
∫∞
0 g(y− ξ)f(ξ)d(ξ) where A is constant and g is quasi

convex and f(ξ) is a polya frequency function (P.F.F) of order 3 (Karlin 1958).

The model and results get somewhat changed if we have convex ordering/production

costs but linear penalty and holding costs. Karlin (1958) shows that if ĉ(x) is convex
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in x and limx→0 ĉ(x) = 0 then y∗(x) is increasing in x but y∗(x) − x (the amount

ordered) is decreasing in x. This is called a generalized base stock policy. The special

case of piece wise linear convex costs leads to a generalized policy with finite number

of distinct base stock levels. For example, the case with two piece wise linear function

often results in real life when there are two suppliers and the less expensive supplier

may have limited capacity.

If the production costs are concave, Karlin (1958) presented conditions under

which a generalized (s,S) policy is optimal. This policy is represented by two pa-

rameters s and S as well as the optimal inventory level y(x), where no orders are

placed if x ≥ s and y is such that y(u) ≥ y(x) ≥ S ≥ s when u ≤ x ≤ s. Basi-

cally, this policy tends to place large orders when the inventory level is lower thereby,

benefiting from economies of scale associated with the concave costs. Porteus (1971)

considered the special case where the costs are concave and piecewise linear (consider

a case where there is a setup cost) and showed that there exist finite break points

s1 ≤ . . . sn ≤ Sn ≤ . . . ≤ S1 such that the ordering policy is to order up to S1 if

x < s1; order up to S2 if s1 ≤ x < s2 and so on, and do not order if x ≥ sn. Porteus

(1991) provides detailed examples and explanations for the piecewise linear convex

and concave costs.

3.2 Multiple Period Dynamic Model

The single period models studied in the previous section are applicable only in very

limited settings such as products that sell in one season, perishable products and

products at the end of their life cycle. Most of the other settings require analysis

of the inventory system over multiple periods. There are two types of models that

are studied in this context – finite horizon and infinite horizon. In the finite horizon

models, there are a fixed number of periods and the objective is to minimize the

discounted total expected costs over the horizon. In the finite horizon models, the

objective could be either to minimize the discounted expected costs or the average

expected costs over the infinite horizon. Another source of differentiation is related

to whether unsatisfied demand is lost or backlogged.

The demand in every period is assumed to be independent and identically dis-

12



tributed. In addition, the costs are assumed linear and stationary in order to obtain

nice structures on the optimal policy. The sequence of events in every period is similar

to the single period model in that orders are placed at the beginning of the period;

demand is observed during the period; maximum demand is satisfied at the end of

the period and resulting costs are incurred. The assumption is that the lead time is

negligible so that the orders placed are available at the end of the period. The finite

horizon problem with backlogging can be formulated as follows. Let Jn(x) be the

optimal cost to go given that there are n periods remaining in the horizon and x is

the on-hand inventory.

Jn(x) = min
y≥x
{c(−x) +Gn(y) + α

∫ ∞
0

Jn−1(y − ξ)dF (ξ) (7)

Note that in the above formulation, we assume that the terminal costs are zero

but one could add salvage costs at the end of the horizon. Since the single period

cost function G(y) is convex in y, one can use recursion to show that the objective is

convex in y and hence there exists an optimal base stock level y∗ in each period. In

the lost-sales case the cost to go recursion is given as follows and a similar analysis

can be done.

Jn(x) = min
y≥x
{c(−x) +Gn(y) + α(

∫ y

0
Jn−1(y − ξ)dF (ξ) +

∫ ∞
y

Jn−1(0)dF (ξ)) (8)

A more compact representation of the above problem can be presented by creating a

function v(y, ξ) given by

v(y, ξ) =

{
a(y − ξ) ξ ≤ y
b(y − ξ) ξ ≥ y

(9)

and utilizing that in the cost to go function.

Jn(x) = min
y≥x
{c(−x) +Gn(y) + α(

∫ ∞
0

Jn−1(v(y, ξ))dF (ξ) (10)

Clearly, if a = 1, b = 1 it represents backlogging; if a = 1, b = 0 it represents

lost sales and if a = 0, b = 0 we have an example of perishable goods. Now define
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M(y) = G(y) −
∫∞
0 α.c.v(y, ξ)dF (ξ). Let yn be the optimal base stock for period n.

Then

Jn(x) = c(−x) +Gn(yn) +α(
∫ ∞
0

Jn−1(v(yn, ξ))dF (ξ)) = −cx+
n∑
i=1

αn−iMn(yn) (11)

Veinott (1965b) showed that the above transformation enables one to simplify

the problem associated with finding the optimal base stock inventory levels for each

period because they are the yn values that minimize Mn(yn) which depends only on

the parameters and expected cost when n periods are remaining. This solution is also

called the myopic solution since we need to solve only for the current period. Veinott

(1965b) presented general conditions under which the myopic solution is optimal for

the finite and infinite (α < 1) horizon discounted cost problem. The optimal myopic

solution depends on whether demand is backlogged or not. In the case of backlogging

the optimal inventory is given by

y∗ = F−1(
π − c+ αc

π + h
) (12)

3.2.1 Lead Time

In a dynamic inventory model, the concept of lead time becomes important. Karlin

and Scarf (1958) showed that if the lead time from the supplier is fixed L and all de-

mands are backlogged then that problem could be converted into an equivalent single

period problem with some adjustments. The assumption of complete backlogging is

critical here because the approach relies on keeping track of the system stock (rather

than just the on-hand inventory). The basic idea is that one keeps track of inventory

on-hand plus all orders that have been placed (but not received yet) minus any back-

logged demand. The effect of orders placed in period t are felt in period L + t, so

the approach is to consider the total demand in the next L+ 1 periods and bring the

system stock to that level. Note the critical fractile still remains the same as given

in (12), what changes is the cumulative probability density function F (which is now

a convolution of L+ 1 demand distributions). This is easy to compute for stationary

and independent normal distributions since the resulting distribution is also normal
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with µ̂ = (L + 1)µ and σ̂ =
√
L+ 1σ. The reason that backlogging assumption is

important because the state space for the dynamic program can be collapsed in to a

single state (that represents the system stock) rather than having a vector of L + 1

variables which represent how much was delivery is expected in the next L periods in

addition to the current inventory level.

The case of stochastic lead time has been studied by several researchers. The

problem arises in this case because it is difficult to compute the system stock as

in the deterministic demand case because knowing when an order was placed does

not help in terms of identifying when the order will arrive. Also it is statistically

possible that orders that were placed later are delivered before earlier orders. Kaplan

(1970) was the first one to show that under two simple assumptions, it is possible to

replicate results corresponding to the deterministic case. The two assumptions that

are required are - (1) later orders are not delivered before earlier orders; (2) the lead

time distribution does not change due to outstanding back orders. Nahmias (1979)

showed that the above assumptions are equivalent to a delivery process generated

by a sequence {At} of independent and identically distributed random variables such

that if At = k then all the orders placed k or more periods before would be delivered

in the current period. This transformation allows one to mimic the optimality of

the myopic policy. Further, for the the average cost analysis, it suffices to assume

identically distributed lead times and independence is not always necessary.

The lost sales model even with deterministic lead times is an open problem in

terms of determining the optimal policy. Morton (1971) presents bounds for the

optimal ordering policy as well as the discounted cost function for the stationary

problem. The heuristics presented are myopic (or near myopic) in nature and are not

necessarily base stock policies. Through a limited computational study, the author

provides evidence that such heuristics may be very close to optimal. More recently,

van Donselaar et. al. (1996) compare the performance of a base stock policy with

another myopic heuristic and show empirically that their dynamic myopic heuristic

outperforms the stationary base stock policy in a significant manner.

15



3.2.2 Setup Costs

Scarf (1960) showed that under general conditions on the cost function (such as K-

convexity) of the one period expected cost, the n-period dynamic inventory problem

has an optimal (s,S) policy. Iglehart (1963) considers the discounted infinite horizon

problem and shows the optimality of the (s, S)policy by giving bounds on sequences

{sn} and {Sn} and establishing their limiting behavior. He also extends this result

to the case with fixed lead time. Veinott (1966b) showed the above results for a

different set of conditions such as the negative of the one period expected costs are

unimodal and that the absolute minima of the one period costs are rising over time.

Zheng (1991) presents a simple proof for the optimality of the (s, S) policy for the

discounted and average infinite horizon problems by constructing an (s, S) or a variant

solution to the optimality equation. Although the (s, S) parameters are computable

for the single period problem, they are more difficult to compute for the dynamic case.

Veinott and Wagner (1965) give an optimal algorithm for computing these parameters.

Ehrhardt (1979) presented a heuristic for computing these parameters using a power

approximation. This approximation has been shown to be very accurate under a

wide variety of settings. However, these approximations suffer when the variance of

the demand is very small (if setup cost is also large). Zheng and Federgruen (1991)

provide an efficient algorithm to compute these values.

3.2.3 Capacity Constraint

In most realistic environments, it is not possible for the firm to produce (order) as

much as required because of production or storage capacity. This poses fundamental

problems in the analysis. Wijngaard (1972) introduces the notion of a modified base

stock policy where a firm tries to produce as much as possible (if unable to reach

the base stock). As indicated in Federgruen and Zipkin (1986ab), Wijngaard (1972)

addresses the optimality and (non)-optimality of this policy for finite and infinite

horizon problems under restrictive assumptions. In a series of two papers, Feder-

gruen and Zipkin (1986ab) show that a modified base stock policy is optimal for the

discounted multiple period and discounted and average cases in the infinite horizon

under general conditions such as when the expected single period cost is convex and
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a discrete demand distribution. Although the optimality of such a policy was estab-

lished, it was very hard to compute the actual parameters efficiently. de Kok (1989)

notes that the modified base stock policy can be computed using the fact that the

inventory position at the start of a period equals S−X, where X is the waiting time

in a D/G/1 queue. The author also provides a simple algorithm to compute the first

two moments of X and a heuristic for computing S. Tayur (1993) introduced the

parallel between the dam model and the inventory dynamics equation and the used

the notion of a shortfall – representing the cumulative amount of falling short of

the optimal base stock level due to capacity constraint. This allows one to construct

a sequence of uncapacitated infinite horizon problems that converge to the capaci-

tated solution under consideration. Then the optimal base stock level can be easily

computed. For capacitated inventory systems, infinitesimal perturbation analysis has

become an efficient approach to compute (through simulation) the optimal parameter

values.

4 Alternative Demand Assumptions

In all the discussions thus far we assumed that the demand distributions in the dif-

ferent periods were identical and known (hence a stationary distribution). However,

in several real environments the demand distributions may be different in different

periods. In this section, we highlight the key developments in those areas.

4.1 Non-stationary Demand

In the non-stationary demand case, the demand is assumed to be from non-identical

distributions in each period. Karlin (1960a) studied the non-stationary inventory

problem with zero lead time and showed that the time specific base stock policy is

optimal. That is, based on the distributions of demand there is an optimal base

stock level in each period. Further, he showed that if the demand distributions are

stochastically increasing in different periods, then the optimal base stock levels are

also increasing. Veinott (1965b) showed that if the optimal base stock levels are such

that in each period one needed to place an order to get to the base stock level then
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Year Reference Year Reference
1959 Scarf 1997 Aviv and Federgruen
1960a Scarf 1998 Graves, Kletter and Hetzel
1960ab Karlin 1998 Kapuscinski and Tayur
1964 Iglehart 1999 Bollapragada and Morton
1965b Veinott 1999 Lariviere and Porteus
1972 Hausman and Peterson 1999 Gavirneni and Tayur
1975 Johnson and Thompson 1999 Gavirneni, Kapuscinski and Tayur
1978 Morton 1999 Cheng and Sethi
1985 Azoury 2000 Lee, So and Tang
1989 Zipkin 2000 Scheller-Wolf and Tayur
1992 Lovejoy 2001 Gavirneni and Tayur
1994 Heath and Jackson 2001 Kaminsky and Swaminathan
1995 Morton and Pentico 2001 Toktay and Wein
1997 Sethi and Cheng 2001 Huang, Scheller-Wolf and Tayur
2001 Gallego and Ozer 2002 Aviv

Table 2: Papers on Single Product Single Stage Non Stationary and Dependent De-
mands.

a myopic policy is still optimal for the non-stationary case. Thus, a myopic policy

is optimal for the case when y∗t ≤ y∗t+1 for all t. Further, the stationary distribution

case is a special case where the identical base stock levels across the different peri-

ods imply that one would necessarily have to place an order given that the initial

inventory is less than the base stock level, leading to the optimality of the myopic

solution. In general when the myopic policy is not optimal it is difficult to obtain the

exact optimal parameters. Morton (1978) provided a sequence of upper and lower

bounds for the optimal base stock levels such that the nth bound requires the knowl-

edge about the first n demand distributions giving planning horizon results for the

infinite horizon case. Lovejoy (1992) considers the non-stationary inventory problem

and provides conditions and stopping rules for utilizing myopic policies under very

general settings. Morton and Pentico (1995) provide myopic solutions that may be ε

close to the optimal solution and hence, term it as near-myopic solution and test their

efficacy through a detailed computational study. Gavirneni and Tayur (2001) provide

a quick method to compute the base stock levels using Direct Derivative Estimation

(DDE). Bollapragada and Morton (1999) study the non-stationary inventory problem

with setup costs and provide a very effective myopic heuristic to the problem by ap-
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proximating the future problem in each period by a stationary problem and obtaining

the solution for that problem.

4.1.1 Cyclic Demand Schedule

Many firms encounter a demand pattern where the demand follows a cyclic pattern

in that the cycles repeat themselves after a while. For example, one could look

at the demand during the four quarters in traditional industries. Karlin (1960ab)

discusses the optimality of the periodic base stock policy which implies that there are

different base stock levels for each of the periods, under stationary costs and cyclic

non-stationary demand for the discounted infinite horizon case, and also provides an

optimal algorithm. Zipkin (1989) extends the above results to the infinite horizon

average cost case with both non-stationary cyclic demand and non-stationary costs.

More recently, Kapuscinski and Tayur (1998) consider the capacitated version of

the problem and prove the optimality of the modified periodic base stock policy for

dynamic multi-period and infinite horizon (discounted and average cost) cases. They

also provide an algorithm to find the optimal base stock levels using infinitesimal

perturbation analysis. Independently, Aviv and Federgruen (1997) also proved the

optimality of the modified periodic base stock policy. Scheller-Wolf and Tayur (2000)

extend the above to include minimum order quantities and lead times.

4.2 Bayesian Demand Updates

In many cases, the demand distribution may not be completely known but as more

information is obtained (with demand realization) the estimate of the demand distri-

bution can be refined. Scarf (1959, 1960a) introduces the bayesian demand updates

where the distribution of the demand is supposed to depend on one or more param-

eters and those parameters are refined using bayesian updates as more information

related to the demand process is obtained. In particular, he assumes that the demand

distribution is gamma with an unknown scale parameter and shows the optimality of

the base stock policy. Karlin (1960b) and Iglehart (1964) extended the analysis to

the case where the demand distribution is of the range type between 0 and ω where

ω is unknown. The fundamental assumption in this approach is that the prior for the
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parameter and the demand distribution are from the same conjugate family so that

the posterior distribution has an easily workable form. Azoury (1985) extends these

results to other types of distributions such as Weibull and Normal (with known and

unknown mean and variance). Further, she explains how the optimal base stock levels

can be determined easily. Basically, a single normalized base stock level is computed

in advance and then the optimal base stock level is obtained by scaling this value. The

scale factor depends on a function of the sufficient statistic of the unknown parame-

ter that is generated based on past demand. Recently, Lariviere and Porteus (1999)

extend the above observations to other environments and provide conditions under

which a firm would invest in additional inventory to learn more about the demand

as well as cases where despite poor sales, the product is stocked in order to obtain

better information. Huang, Scheller-Wolf and Tayur (2001) use a Hidden Markov

Model (HMM) to update the state of the unknown demand of a new product.

4.3 Forecast Evolution

Another important reality that needs to be incorporated in inventory models is the

forecasting process utilized. Hausman and Peterson (1972) develop a multi-period

model with terminal demand where the forecast errors get refined in a Lognormal

process. In a capacitated environment they show that optimal policy is of threshold

type and present heuristics to solve the problem. More recently, Kaminsky and

Swaminathan (2001) consider a forecast generation process which depends on forecast

bands (and the demand is expected to be uniformly spread in the interval) that get

refined over time. In a terminal demand capacitated setting, they show the optimality

of the threshold type policy and provide very efficient algorithm for cases with and

without holding costs. Researchers have also studied the Martingale model for forecast

evolution along with production-inventory decisions. Heath and Jackson (1994) and

Graves et. al. (1998) independently introduce these models and develop heuristical

methods to solve the problem. Recently, Toktay and Wein (2001) study this problem

and use heavy traffic approximations to prove the optimality of the base stock policy

under those assumptions. More recently, Aviv (2002) presents a supply chain model

where different members observe subsets of the underlying demand information, and

adapt their forecasting and replenishment policies accordingly. For each member, he
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identifies an associated demand evolution model, for which he proposes an adaptive

inventory replenishment policy that utilizes the Kalman Filter technique. He provides

a simple methodology for assessing the benefits of various types of information-sharing

agreements between members of the supply chain.

4.4 Demand Dependencies

Demand across the different periods could be related to each other in some envi-

ronments. Veinott (1965ab) through his work on non-stationary demands provides

general conditions under which even a dependent demand process may have myopic

solutions. Johnson and Thompson (1975) utilize those results to show that even when

the demand is described by a ARMA (auto-regressive moving average) model with an

additive shock, a myopic policy remains optimal under mild conditions. Sobel (1988)

provided general conditions under which a myopic solution remains optimal.

Another way to represent the dependencies is to assume that the demand gets

generated from a Markov process, so that the state in the current period affects the

demand in the next period. Karlin and Fabens (1960) introduced a Markovian de-

mand model and postulate that a state dependent (s, S) policy would be optimal.

However, they restrict themselves to stationary (s, S) policy due to complexity. Sethi

and Cheng (1997) prove the optimality of the state dependent (s, S) policy for marko-

vian demand for both finite and infinite horizon problems. They can also extend the

model to capture periods with no orders as well as capacity and service constraint.

Gavirneni and Tayur (1999) consider a modified version of the Markovian process

which may be generated due to a fixed ordering schedule (“Target Reverting”) at the

customer end. They prove the optimality of a modified base stock policy and provide

computational results. Gallego and Ozer (2001) study a situation where customers

may place orders in advance (more common in a make to order environment) which

provides the firm with advance demand information. They show that state-dependent

(s, S) and base-stock policies are optimal for stochastic inventory systems with and

without fixed costs.The state of the system reflects the knowledge of advance de-

mand information. They also determine conditions under which advance demand

information has no operational value.
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Another reason for demand dependencies is that the firm may be receiving orders

from another firm that may be following some optimal policy such as (s, S). Gavirneni

et. al. (1999) study the value of this additional demand information in a capacitated

multi-period setting. Lee, So and Tang (2000) study the value of information in a two

level supply chain with non-stationary end demand and show that value of information

could be very high, particularly in cases where the demand may be correlated over

time. Demand is also affected by the pricing decisions used by firms. Cheng and Sethi

(1999) consider a general model where the customer demand is generated by a Markov

process whose state is dependent on the promotion decisions. They assume a fixed

cost for promotion and that the demand moves to a stochastically higher state the

next period. The firm tries to find the optimal promotion schedule in terms of which

periods to promote and what inventory levels to stock. For a finite horizon problem

they show that there exists a threshold level P such that if the initial inventory is

greater than P then it is optimal to promote, and also show that a base stock policy

is optimal for the linear cost case.

5 Generalizations

There have been several generalizations of the single firm single product form that

has been discussed so far. In this section, we will briefly explore these generalizations.

5.1 Multi-Echelon

The natural extension of a single firm model in a supply chain setting relates to

considering multiple echelons under a single firm. Clark and Scarf (1960) study a

serial system with each facility (representing an echelon) supplying the downstream

facility within a deterministic non-zero lead time. The echelon stock is defined as

the stock at that facility plus the stock at all the facilities downstream. The holding

and stock-out costs are assessed independently, taking into account the echelon stock

of each facility. Under the above assumptions, they show that the problem can be

decomposed into independent problems each for one facility and that the base stock

policy still remains optimal in that case where each facility tries to bring the inventory
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as close as possible to the optimal echelon base stock level. They also provide a

mechanism by which the optimal base stocks can be computed by sequentially going

from the last facility moving backwards.

Year Reference Year Reference
Multiple Echelons

1960 Clark and Scarf 1962 Clark and Scarf
1981 Eppen and Schrage 1984b Federgruen and Zipkin
1985 Roundy 1985 Schmidt and Nahmias
1989 Rosling 1994, 1995 Glasserman and Tayur
1994, 1998 Chen and Zheng 1999 Chen
2000 Parker and Kapuscincki 2001 Chen and Song
2001 Muharremoglu and Tsitsiklis

Multiple Products
1963 Hadley and Whitin 1969 Ignall and Veinott
1969 Ignall 1981 Silver
1984 Federgruen, Gronevelt and Tijms 1985ab Karmarkar, Kekre and Kekre
1987 Karmarkar , Kekre and Kekre 1988 Atkins and Iyogun
1990 Gallego 1993 Karmarkar
1993 Lee and Billington 1996 Federgruen and Catalan
1996 Lambrecht et. al. 1997 Lee and Tang
1998 Swaminathan and Tayur 1998 Eynan and Kropp
1998 Anupindi and Tayur 1999 Bollapragada and Rao
1999 Bassok, Anupindi and Akella 2001 Rajagopalan and Swaminathan
2001 Bispo and Tayur 2002 Swaminathan and Lee
2002 Rao, Swaminathan and Zhang 2002 Van Mieghem and Rudi

Multiple Suppliers
1964 Fukuda 1966a Veinott
1969 Wright 1993 Anupindi and Akella
1999 Swaminathan and Shanthikumar 2000 Scheller-Wolf and Tayur

Process Randomness
1958 Karlin 1990 Henig and Gerchak
1991 Bassok and Akella 1994 Ciarallo, Akella and Morton
1995 Lee and Yano

Table 3: Papers on generalizations of the base case.

Federgruen and Zipkin (1984b) provide a simple method to streamline the com-

putations in the infinite horizon case with normal demands. Chen and Song (2001)

consider a multi-stage serial system with Markov modulated demand in that the de-

mand distribution in each period is determined by the current state of an exogenous

Markov chain. They show the optimality of a state dependent echelon base-stock
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policy for the long-run average costs case. They also provide an algorithm for de-

termining the optimal base-stock levels and extend their results to serial systems in

which there is a fixed ordering cost at the last stage and to assembly systems with

linear ordering costs. In a more recent work, Muharremoglu and Tsitsiklis (2001)

employ a novel approach based on decomposition of the problem into a series of

single-item single-customer problems that enables them to provide a simpler proof

for the optimality of echelon base stock policies. This approach enables them to ex-

tend their results to several variants of the problem including stochastic lead time

and Markovian demand processes.

One variant of the serial system is the assembly system where more than one

facility may be involved in an upstream echelon to provide parts for the downstream

assembly operation. Schmidt and Nahmias (1985) study the case with two echelons

where the upstream echelon has two suppliers with different deterministic lead times

and a fixed assembly lead time. The optimal policy has an interesting structure in that

the assembly level has a base stock policy while the policy at the upstream echelon

is such that it tries to balance the echelon stock of the two components taking into

account the difference in lead times of the two suppliers. Rosling (1989) showed that

under certain initial conditions, an assembly system can be reduced to a serial system

with modified lead times so that results due to Clark and Scarf (1960) may apply to

the modified system. Another variant of the serial system is the distribution system

where one facility at an upstream level supplies to multiple facilities downstream. The

results of the serial system do not carry forward easily to the distribution network.

Eppen and Schrage (1981) analyze a one warehouse and multiple retailer network and

explore the tradeoff involved therein.

The addition of capacity restrictions on the above generalization leads to several

complications. Firstly, the simple base stock policies may no longer be optimal, and

secondly, even under restricted set of base stock policies the computation of these

parameters is challenging. Glasserman and Tayur (1994, 1995) develop a solution for

finding the optimal base stock levels at the different echelons under a modified base

stock policy and utilize a simulation based optimization procedure using infinitesi-

mal perturbation analysis to develop an efficient solution methodology for finding the
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optimal parameter values. They also extend their approach to the assembly and dis-

tribution networks under certain conditions. Parker and Kapuscinski (2000) demon-

strate that a modified echelon base-stock policy is optimal in a two-stage system for

a capacity dominating condition. They show that this holds for both stationary and

non-stationary stochastic customer demand for finite and infinite horizons under dis-

counted and average-cost criteria. There have been numerous attempts to develop

a better grasp of the case with setup costs at both stages even for a serial system

starting with Clark and Scarf (1962). Recently, Chen (1999) utilized the nested pol-

icy ideas developed by Roundy (1985) for deterministic systems, in a two stage serial

system with Poisson demand and setup costs to develop 94% optimal policies for the

problem.

5.2 Multiple Products

Another dimension of extension of these models is along the number of products. If

all the products have independent demand and there is no capacity or production

restrictions then naturally the problem can be decoupled into independent single

product problems. However, in reality, a firm produces multiple products (which

may be similar in functionality) and may have a common capacity to utilize for those

products. Hadley and Whitin (1963) consider the capacitated news vendor problem

when there is a common capacity constraint of the form

∑
i

aiyi ≤ b

They solve the problem by relaxing the constraint and obtain an explicit expression

for the optimal quantities in terms of the Lagrangean multiplier λ as follows. If the

optimal base stock levels are not feasible then

y∗i (λ) = F−1{πi − ci − aiλ
πi + hi

} (13)

and λ is chosen so that ∑
i

aiy
∗
i (λ) ≤ b.

Recently, Bispo and Tayur (2001) study base stock policies under various scenarios

of capacity sharing across products in a single stage, serial and re-entrant systems.
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The notion of similarity among the different products and the fact that they could

be substituted for each others demand was explored by Ignall and Veinott (1969).

They showed that in fact the base stock policies are optimal for the problem with

nested downward substitution (where product 1 can substitute for product 2, 3, . . . n;

product 2 can substitute for product 3, 4, . . . n and so on) in a multiple period infinite

horizon setting. Bassok et. al. (1999) provide an alternative proof for the same result.

The problem related to downward substitution as well as set up costs is extremely

hard to obtain theoretical insights on. Rao et. al. (2002) provide a highly efficient

algorithm for finding the optimal production/substitution strategy for that problem

using a combination of dynamic programming and simulation based optimization.

Another important concept with multiple products relates to postponing the point

of differentiation of the products in order to reduce inventory as a result of risk

pooling – storing inventory of semi-finished products reduces the risk associated with

stocking that inventory. Lee and Billington (1993) and Lee and Tang (1997) study

postponement in the context of distribution through the channel. Swaminathan and

Tayur (1998) study the postponement issue within the context of a capacitated final

assembly facility and term the semi-finished products as vanilla boxes. For more

details on research conducted on postponement strategies, see Swaminathan and Lee

(2002).

Another complexity with multiple products is studied in the Joint Replenishment

Planning (JRP) context, where there is a major setup cost at each order (across

products), and a minor setup cost that may be product dependent. The stochastic

version is particularly important as it is a very common problem in practice. A

reasonable ordering policy that has been studied extensively are the can-order or (s,

c, S) policies. In such a policy,when any item i inventory drops below its reorder point

si a reorder is scheduled and all other item j whose inventory is below their can-order

limit cj are also included in the order. Ignall (1969) showed that can-order policies are

not optimal in general. However, Silver (1981) and Federgruen et. al. (1984) have

empirically shown that can-order policies perform well. Atkins and Iyogun (1988)

provide a lower bound for the joint replenishment problem above and show that can-

order policies are not very efficient when the joint setup cost is high. They show

that a heuristic based on a periodic ordering can outperform can-order policies in a
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significant manner. Eynan and Kropp (1998) propose yet another periodic heuristic

and show that is close to the optimal solution through a computational study.

Another important problem is the stochastic economic lot sizing problem (ELSP)

where several items need to be produced in a common facility with limited capacity,

under significant uncertainty regarding demands, production times, or combinations

thereof. Gallego (1990) considers the problem of scheduling the production of several

items in a single facility that can produce only one item at a time. He assumes that

demands are random with constant expected rates and allows back orders and charge

holding and backlogging costs at linear time weighted rates. Items are produced at

continuous constant rate and setup times and setup costs are item dependent con-

stants. He proposes a real time scheduling system that utilizes the expected demand

to create the initial schedules and adjusts them for the randomness. Federgruen

and Catalan (1996) propose cyclical base stock policies for the problem. Under this

scheme, when the facility is assigned to a given item, production continues until ei-

ther a specific target inventory level is reached or a specific production batch has been

completed; different items are produced in a given sequence or rotation cycle, possibly

with idle times inserted between the completion of an item’s production batch and the

setup for the next item. Optimal policies within this class which minimize holding,

backlogging, and setup costs are effectively determined and evaluated. Bollapragada

and Rao (1999) as well as Anupindi and Tayur (1998) are more recent contributions

to ELSP and cyclic schedule problems.

Earlier research related to manufacturing lead times, order release and capacity

releases is summarized in Karmarkar (1993). Among those Karmarkar, Kekre and

Kekre (1985ab, 1987) in a series of papers studied lot sizing in multi-item multi-

machine job shops and cellular environments. Lambrecht et. al. (1996) introduce

the notion of safety lead times in queuing models of a make to order manufactur-

ing environment. They show that there is a convex relationship of expected waiting

time, variance of the waiting time and the quoted lead time as a function of the

lot size and a concave relationship of the service level as a function of the lot size.

This allows them to accurately quantify the safety time and to compute the asso-

ciate service levels. Although lsizing and capacity expansion are very closely related
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they have not been studied extensively in integrated models. In a recent work, Ra-

jagopalan and Swaminathan (2001) study the capacity expansion and lot sizing in a

multi-product environment with deterministic known demand and present effective

heuristics and bounds for the problem. More recently, Van Mieghem and Rudi(2002)

develop a framework to study multi-period multi-product problems of stochastic ca-

pacity investment and inventory management. The optimal capacity and inventory

decisions balance overages with underage costs. The optimal balancing conditions are

interpreted as specifying multiple critical fractiles of the multivariate demand distri-

bution; they also suggest appropriate measures for and trade-offs between product

service levels. They establish dynamic optimality of inventory and capacity policies

for the lost sales case.

5.3 Multiple Suppliers

Several firms have more than one supplier for any particular product in order to

hedge against the uncertainty in the delivery process as well as to avoid being held

captive by the supplier. Fukuda (1964), Veinott (1966a) and Wright (1969) study the

case where rush orders from a reliable supplier could be obtained one period earlier

(at an additional cost) than the normal lead time in an emergency situation. They

showed that there are two base stock levels – an emergency base stock level and a

normal base stock level. If the inventory level is lower than the emergency stock

level then orders are placed with the more reliable supplier to get to the emergency

stock level. Then additional orders are placed with the normal supplier to reach the

normal base stock level. Anupindi and Akella (1993) study a different version of the

problem where the lead times and their unit costs are different. They show that

the optimal policy has two parameter base stock levels. If the inventory is higher

than the larger base stock level then no orders are place. If it is in between the two

base stock levels then orders are placed only with the less expensive supplier and else

orders are placed with both. In particular, they note that orders are never placed

with the more expensive supplier alone. Scheller-Wolf and Tayur (2000) extend these

results into a more general model. Swaminathan and Shanthikumar (1999) showed

that the above structure is driven by the continuity assumption in demand and need

not hold in general for discrete demand distributions. There are several other papers
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which deal with supply contracts; see Anupindi and Bassok (1998), Lariviere (1998),

Corbett and Tang (1998) and Tsay et. al. (1998) for reviews on this topic.

5.4 Randomness in Process

Another important generalization of the traditional inventory models relates to the

randomness in production process or also called random yield. Several industries

particularly semiconductors face a critical problem related to managing the yield

of the process and simultaneously determining the inventory levels. Karlin (1958)

explores the notion of randomness in supply by assuming a probability distribution

for the the receipt of harvest from the producer. The decision is whether to order

given a set of probability of possible harvests. Bassok and Akella (1991) study the

joint production and ordering decisions in an environment where demand is random

and amount received is a random fraction of that ordered. Henig and Gerchak (1990)

consider the case where the amount received is a fraction of amount ordered and

characterize the optimal policy. For the multi-period case they show the convexity of

the cost function and show the existence of the optimal order point. Ciarallo et. al.

(1994) consider a problem where the total capacity itself is random and show that

there are optimal order points in that case as well although the convexity of the cost

function is lost in multi-period and infinite horizon problems. They also present the

notion of extended myopic policies in the infinite horizon case. Lee and Yano (1995)

present a comprehensive literature review on random yield research.

5.5 Approximations

Given the difficulty of solving complex inventory problems exactly, many approximate

methods for solving these problems have been proposed. One such approximation is

the large deviation approximation to study capacitated systems, both in discrete time

and continuous time models. The common characteristics in such systems is that

inventory is held in part to compensate for the capacity restriction. The basic idea

in this approximation is that if the tail of the distribution of demand is exponentially

bounded, then the tail of the distribution of inventory shortfall is approximately

exponential. Further, the exponent in this approximation can be easily computed.
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This approximation is useful because the performance of the inventory system with

respect to service level directly depends on the tail distribution. Glasserman (1998)

provides a detailed overview of this approach.

Another approximation that has been used by researchers is the one related to ap-

proximately characterize the optimal policy for a multi-echelon inventory system with

economies of scale. Chen and Zheng (1994, 1998) discuss near-optimal policies (in a

continuous setting) for multi-echelon inventory systems. Chen (1998) provides a de-

tailed description of various approximations that have been considered by researchers

in this area.

Finally, approximations related to results under heavy traffic assumptions have

been used in inventory models as well. These approximations are useful when the

load of the system is very high and utilization is close to 100% (see Toktay and Wein

2001).

6 Applications

Year Reference
1988 Cohen and Lee
1990 Cohen, Kamesam, Kleindorfer, Lee and Tekerian
1993 Lee and Billington
1998 Swaminathan, Smith and Sadeh
2000 Ettl, Feigin, Lin and Yao
2000 Rao, Scheller-Wolf and Tayur
2000 Graves and Willems

Table 4: Papers on Applications.

Several applications in the past years have been developed within the context

of supply chain management. These applications can be clearly classified into two

categories – one that builds large integrated models of a multi-tiered supply chain

primarily based on deterministic assumptions about demand, supply and process and

the other based on decomposition of the large scale supply chains and approximation

of the behavior through the development of detailed tactical supply chain models

discussed in this chapter at each of those nodes. We will focus on the latter.
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One of the first large scale model framework that linked decision and performance

throughout the material-production-distribution supply chain was developed by Co-

hen and Lee (1988). The model structure could be used to predict the performance

of a firm with respect to the cost of its products, the level of service provided to its

customers and the responsiveness and flexibility of the production/distribution sys-

tem. The analysis took into account the nature of the product produced, the process

technologies used to manufacture the products, the structure of the facility network

used to manage the material flow and the competitive environment in which the firm

operates. It differed from earlier work in that a decentralized control was assumed

and combined the performance of the single nodes to create the combined supply

chain effect. A series of linked, approximate sub-models and a heuristic optimization

procedure were developed. Each sub-model in the model framework used tractable

stochastic models. A software package to support the structure was also introduced.

Another large scale implementation was the development of Optimizer, a decision

support for IBM’s multi-echelon inventory system for managing spare parts inven-

tory (see Cohen et. al. 1990). The model and analysis in this work relied heavily

on decoupling the multi-echelon inventory system into several single level inventory

systems and determining the optimal (or near-optimal) parameters for those single

echelon systems. Starting from the echelon closest to the customer, the parameters

are found in an iterative manner, by coupling the demands at the higher echelons of

the supply chain with decisions at lower echelons regarding the inventory parameter

decisions, namely the (s, S) values.

Lee and Billington (1993) consider a model of the supply chain with a periodic

review policy and stochastic demand that has decentralized control. The idea is sim-

ilar, to analyze the performance of individual entities and then create their combined

effect. This model provided various insights for supply chain planning at HP. Ettl

et. al. (2000) adopt a queuing approximation to determine the service level im-

plications in a multi-tiered network to find the optimal inventory levels to stock at

different points in the supply chain. In their approach, each of the sites follows a

base stock policy and they assume that there is a nominal lead time for production

and transportation at each of the echelons. The actual lead times may be greater

due to shortages. They model each inventory buffer as an infinite-server M/G/∞
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queue following a base stock policy (as in Buzzacott and Shanthikumar 1993). They

assume a Poisson arrival process for demand. Using the above assumptions, they

couple the service measures across the supply chain with the base stock levels chosen.

Using a heuristic approach they find the optimal base stock levels. This model and

approximation are validated and refined by supply chain managers through detailed

simulation analysis based on an enhanced version of the supply chain library devel-

oped in Swaminathan et.al. (1998). The above model and implementation led to an

estimated $750 million reduction in inventory at IBM and was awarded the Franz

Edelman Prize in 1999.

More recently, Rao et. al. (2000) describe the successful implementation of a

dynamic supply chain model at Caterpillar. They analyze alternative supply chain

configurations for a new product line incorporating expedited deliveries, partial back-

logging of orders and sales that were responsive to service provided. Utilizing a

combination of models from network flow theory, inventory management and simu-

lation, they analyze alternative choices for the supply chain configuration. Graves

and Willems (2000) develop a framework for strategic inventory placement in a sup-

ply chain that is subject to demand or forecast uncertainty. They model the supply

chain as a network where each entity operates according to a base stock policy, faces

bounded demand and has a guaranteed delivery lead time between the echelons. They

utilize the spanning tree concept and formulate the problem as a deterministic op-

timization problem to obtain the safety stock. This model was utilized by product

flow teams at Eastman Kodak. A more detailed description of approximations for

multi-stage multi-item models appears in de Kok and Fransoo (2002), chapter 14 of

this handbook.

7 Conclusions and Future Directions

In the Internet age as firms try to completely integrate their operations, tactical

planning models for supply chain integration are becoming extremely relevant. In

this chapter, we have provided an overview of several streams of research on this

broad topic that have been conducted by researchers in the past. Clearly the above

stream of research has had tremendous impact on both academic research as well as
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on practice. However, there are certain changes that are taking place with the advent

of the Internet which have opened rich topics for new research (see Swaminathan and

Tayur 2002 for details). Firstly, more and more firms are trying to integrate their

production decisions with their pricing decisions and this opens up several topics of

research which coordinate supply chain and pricing decisions under cooperative and

competitive settings. Cachon (2002) explores some of the models developed therein.

Secondly, the focus of operations in many firms is changing from a single entity

optimization model to a more collaborative decision making process. Analysis needs

to be conducted on models which integrate information and supply chain decisions.

Chen (2002) explores such models in another chapter. Finally, there is a growing

need to decision support systems that can operate in real time to provide solutions

for tactical supply chain problems.
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