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1 Introduction

The inclusion of the space dimension in economic analysis has regained relevance

in the recent years. The emergence of a new economic geography is indeed one of

the major events in the economic literature of the last decade (see Krugman, 1991

and 1993, Fujita, Krugman and Venables, 1999, and Fujita and Thisse, 2002). De-

parting from the early regional science contributions, which are typically based on

simple flow equations (see Beckman, 1952, or more recently, Ten Raa, 1986, and

Puu, 1982), the new economic geography models use general equilibrium frame-

works with a refined specification of local and global market structures, and some

precise assumptions on the mobility of production factors. Their usefulness in ex-

plaining the mechanics of agglomeration, the formation of cities, the determinants

and implications of migrations, and more generally, the dynamics of the distribu-

tions of people and goods over space and time is undeniable, so undeniable that this

discipline has become increasingly popular in the recent years.

Two main characteristics of the new economic geography contributions quoted

just above are: (i) the discrete space structure, and (ii) the absence of capital ac-

cumulation. Typically, economic geographers use two-regions frameworks, mostly

analogous to the two-country models usually invoked in trade theory. However, some

continuous space extensions of these models have been already studied. In a con-

tinuous space extension of his 1993 two-region model, Krugman (1996) shows that

the economy always displays regional convergence, in contrast to the two-region ver-

sion in which convergence and divergence are both possible. Mossay (2003) proves

that continuous space is not incompatible with regional divergence using a different

migration scheme. In Krugman’s model, migration follows utility level differentials,

which in turn implies that location real wages provide the only incentive for mov-

ing (predominant regional convergence force). In Mossay, migrations additionally
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depend on idiosyncrasies in location taste, inducing a divergence force, which can

balance the utility gradient force mentioned before. As a consequence, regional

divergence is a possible outcome in this model.

Both models, however, ignore the role of capital accumulation in migrations:

They both assume zero (individual) saving at any moment. Indeed, the zero saving

assumption is a common characteristic to the new economic geography literature,

especially in continuous space settings, with the notable exception of Brito (2004).

This strong assumption is done to ease the resolution of the models, which are yet

very complex with the addition of the space dimension. The literature closest to this

present paper was developed in the seventies by Isard and Liossatos (1979), where

they studies a number of models both in discrete and continuous cases.

Nonetheless, as capital accumulation is not allowed, the new economic geography

models are losing a relevant determinant of migrations, and more importantly, an

engine of growth. While a large part of growth theory is essentially based on capital

accumulation, the new economic geography has mainly omitted this fundamental

dimension so far. It seems however clear that many economic geography problems

(eg. uneven regional development) have a preeminent growth component, and vice

versa. Thus, there is an urgent need to unify in some way the two disciplines, or at

least to develop some junction models.

This paper follows exactly this line of research. We study the Ramsey model

with space. Space is continuous and infinite, and optimal consumption and capital

accumulation are space dependent. A peculiar characteristic of Brito’s framework is

the non-Benthamain nature of the Ramsey problem: he considers an average utility

function in space in the objective function. This is done in order to prevent the

divergence of the objective integral function over an infinite space. In this paper

we will work in the classical Benthamian case. We can do so by accounting for

population density, which introduces a kind of spatial discounting therefore forc-
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ing the convergence of the objective integral function even under an infinite space

configuration.

Our modelling of space is done so as “to avoid simple but unrealistic bound-

ary conditions” (Ten Raa, 1986, page 528–530). Capital is perfectly mobile across

space (and of course, across time through intertemporal substitution, as usual in a

Ramsey-like model). Capital flows from the regions with low return to capital to

the regions with high return. In such a case, it has been already shown by Brito

(2004) that capital, the state variable of the optimal control problem, is governed

by a parabolic partial differential equation. This is indeed the main difficulty of

the problem compared to the traditional regional science approach, as in Ten Raa

(1986) and Puu (1982), where the considered fluid dynamics modelling gives rise to

wave equations of income.

Establishing the Pontryagin conditions in our parabolic case with infinite time

and infinite space is not a very difficult task, using the most recent advances in the

related mathematical discipline, notably Raymond and Zidani (1998), and Lenhart

and Yong (1992). See also Brito (2004) for his specific non-Benthamian Ramsey

problem. Unfortunately, the asymptotic properties of the resulting dynamic systems

are by now still unsolved in the mathematical literature. Actually, the asymptotic

literature of partial differential equations (see for example, Bandle, Pozio and Tesei,

1987) has only addressed the case of scalar (or system of) equation(s) with initial

values. In a Ramsey-like model, the intertemporal optimization entails a forward

variable, consumption, and a transversality condition. As a result, the obtained

dynamic system is no longer assimilable to a Cauchy problem, and it turns out that

there is no natural transformation allowing to recover the characteristics of a Cauchy

problem, specially for the asymptotic assessment.

In this paper, we take a step further. Using explicit integral representations of
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the solutions to parabolic partial differential equations (see Pao, 1992, for a nice

textbook in the field, and Wen and Zou, 2000 and 2002), we will clearly identify

a serious problem with the optimal control of these equations: In contrast to the

Ramsey model without space where there exists a one-to-one relationship between

the initial value of the co-state variable, say q(0), and the whole co-state trajectory,

for a given capital stock path, this property does not hold at all in the spatial

counterpart, that is q(x, t), the co-state variable for location x at time t, is not

uniquely defined by the data q(0, x) because of the integral relationship linking q(x, t)

to q(0, x). As a consequence, while the transversality conditions in the Ramsey

model without space allows to identify a single optimal trajectory for the co-state

variable, thus for the remaining variables of the model, there is no hope to get the

same outcome with space. We are facing a typical ill-posed problem in the sense of

Hadamard (1923): We cannot assure neither the existence, or the uniqueness of the

solutions, nor the continuous dependence on the known initial-boundary conditions.

How to deal with this huge difficulty? One can try to extract special solutions

to the dynamic system arising from optimization; this is the strategy adopted by

Brito (2004) who looks for the existence of travelling waves, a nice solution concept

intensively used in applied mathematics. In order to keep the possibility to compare

with the traditional Ramsey model’s solution paths, we study the case of the Ramsey

model with linear utility. In such a case, we are -as usual- able to disentangle the

forward looking dynamics from the backward-looking, which ultimately allows us to

use the available asymptotic literature on scalar initial-value parabolic equations.

Depending on the initial capital distribution, optimal consumption per location can

be initially corner or interior, and the dynamics of capital accumulation across space

and time will be governed by a scalar parabolic equation. We shall study whether

an initially ”corner” location (ie. with an initially corner consumption solution)

can converge to its interior regime or to any other regime to be characterized. The
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obtained properties are substantially different from those of the linear Ramsey model

without space in many respects, due to the spatial dynamics induced by capital

mobility. Indeed, capital accumulation in a given location will not only depend on

the net savings of the individuals living at that location, as in the standard Ramsey

model, but also on the trade balance of this location since capital is free to flow

across locations. In this sense, the linear spatial Ramsey model is rich enough to

serve as a perfect illustration of how the spatial dynamics can interact with the

typical mechanisms inherent to growth models.

The paper is organized as follows. Section 2 states our general spatial Ramsey

model with some economic motivations. It also derives the associated Pontryagin

conditions using the recent related mathematical literature. Section 3 is one of the

most crucial contributions of the paper: we study the existence and uniqueness of

solutions to the dynamic system induced by the Pontryagin conditions and show via

explicit integral representations of the solutions, that the latter problem is ill-posed.

Section 4 is the detailed analysis of the linear utility case. We recall some of the

properties of the linear Ramsey model without space. We then move to the spatial

framework. The interior and corner solutions are first characterized. Then we study

the convergence from below and from above the interior solution, assuming that all

the locations start either below or above their interior regime. We study in depth

the consequences of capital mobility on the asymptotic capital distribution across

space. Section 5 concludes.

2 The general spatial Ramsey model

We describe here the ingredients of our Ramsey model, formulate the corresponding

optimal control problem and give the associated Pontryagin conditions.
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2.1 General specifications

We consider in this paper the following central planner problem

max
c

∫ ∞

0

∫

R
U ((c(x, t), x)) e−ρtdx dt, (1)

where c(x, t) is the consumption level of a representative household located at x at

time t, x ∈ R and t ≥ 0, U(c(x, t), x) is the instantaneous utility function and ρ > 0

stands for the time discounting rate. For a given location x, the utility function is

standard, i.e., ∂U
∂c

> 0, ∂2U
∂2c

< 0, and checking the Inada conditions. Our specification

of the objective function can be interpreted as the following. Suppose that U(c, x) is

separable, U(c, x) = V (c) ψ(x), with V (·) a strictly increasing and concave function,

and ψ(x) an integrable and strictly positive function such that
∫
R ψ(x) = 1. In such

case, the presence of x via ψ(x) in the integrand of the objective function stands for

the location’s x population density. Further assumptions on the shape of preferences

with respect to x will be done along the way.

We now turn to describe the law of motion of capital: How capital flows from

a location to another. Hereafter we denote by k(x, t) the capital stock held by the

representative household located at x at date t. In contrast to the standard Ramsey

model, the law of motion of capital does not rely entirely on the saving capacity of

the economy under consideration: The net flows of capital to a given location or

space interval should also be accounted for. Suppose that the technology at work in

location x is simply y(x, t) = A(x, t)f(k(x, t)), where A(x, t) stands for total factor

productivity at location x and date t and could be another heterogeneity factor, and

f(·) is the standard neoclassical production function, which satisfies the following

assumptions:

(A1) f(·) is non-negative, increasing and concave;
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(A2) f(·) verifies the Inada conditions, that is,

f(0) = 0, lim
k→0

f ′(k) = +∞, lim
k→+∞

f ′(k) = 0.

Moreover we assume that the production function is the same whatever is the

location. Hence the budget constraint of household x ∈ R is

∂k(x, t)

∂t
= A(x, t)f (k(x, t))− δk(x, t)− c(x, t)− τ(x, t), (2)

where δ is the depreciation rate of capital1, and τ(x, t) is the household’s net

trade balance of household x at time t, and also the capital account balance, by the

assumption of homogenous depreciation rate of capital, no arbitrage opportunities.

Since the economy is closed, we have

∫

R

(
∂k(x, t)

∂t
− A(x, t)f (k(x, t)) + δk(x, t) + c(x, t) + τ(x, t)

)
ψ(x)dx = 0.

From (2), it is easy to see for any [a, b] ⊂ R, it follows

∫ b

a

(
∂k(x, t)

∂t
− A(x, t)f (k(x, t)) + δk(x, t) + c(x, t) + τ(x, t)

)
ψ(x)dx = 0. (3)

The net trade balanced in region X = [a, b] equals to capital flows received from

locations lying to the left of a minus that flowing away to the right of b. Therefore

the net trade balanced at location x can be rewritten as

τ(x, t) = − lim
dx→0

∂k(x+dx,t)
∂x

− ∂k(x+dx,t)
∂x

dx
= −∂2k

∂x2
.

Capital movements tend to eliminate geographical differences and we suppose
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that there are no institution barriers to capital flows (or do not consider the adjust-

ment speed) 2 3. Without inter-regional arbitrage opportunities, capital flows from

regions with lower marginal productivity of capital to the higher ones. Consequently

capital flows from regions with abundant capital toward the ones with relatively less

capital.

Substituting the above equation into equation (3), we have ∀X ⊂ R, ∀t

∫

X

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− A(x, t)f(k(x, t)− c(x, t)− δk(x, t))

)
ψ(x)dx = 0.

Given ψ(x) > 0, the budget constraint can be written as (see Appendix)4:

∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− δk(x, t))− c(x, t), ∀(x, t). (4)

The initial distribution of capital, k0(x), is assumed to be known, bounded and

continuous. Moreover, we assume that, if the location is far away from the origin,

there is no capital flow5, that is

lim
x→±∞

∂k(x, t)

∂x
= 0.

The new term ∂2k(x,t)
∂x2 in the budget constraint (4) is the spacial ingredient of the

dynamics of capital accumulation, it simply captures capital mobility across space.

It is a parabolic partial differential equation, and as argued in the introduction of the

paper, it complicates tremendously the treatment of the associated optimal control

problem. We shall precisely identify the source of this complication. Before let us

present briefly our optimal control problem.
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2.2 The optimal control problem

We can write our optimal control problem as follows

max
c

∫ ∞

0

∫

R
U (c(x, t), x) e−ρtdxdt. (5)

subject to:





∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− δk(x, t)− c(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, t ≥ 0.

(6)

Here comes the definition of an optimal solution:

Definition 1 A trajectory (c(x, t), k(x, t)), with k(x, t) in 6 C2,1(R × [0,∞)) and

c(x, t) piecewise-C2,1(R × [0,∞)), is admissible if k(x, t) is a solution7 to problem

(6) with control c(x, t) on t ≥ 0, x ∈ R, and if the integral objective function (5)

converges. A trajectory (c?(x, t), k?(x, t)), t ≥ 0, x ∈ R, is an optimal solution of

problem (5) and (6) if it is admissible and it it is optimal in the set of admissible

trajectories, ie. for any admissible trajectory (c(x, t), k(x, t)), the value of the integral

(5) is not greater than its value corresponding to (c?(x, t), k?(x, t)).

It is not very hard to see that the shape of preferences is crucial for the con-

vergence of the integral (5) when space is unbounded. As we have mentioned in

the introduction, Brito (2004) noticed this fact, and to get rid of it, he considered a

different objective function, namely average utility function in space instead of our

Benthamian type functional. We prefer to take another approach, and notably to
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maintain the Benthamian functional as the natural extension of the original Ramsey

model. We could have simplified our treatment by having space bounded but in such

a case one would have to set boundary conditions, ∀t ≥ 0, which is a highly arbitrary

task. We finally prefer to address the pure case of infinite space and infinite time.

By considering that space is infinite just like time imposes a kind of symmetric

handling of both to get admissible solutions. In particular, just like time discount-

ing is needed to ensure the convergence of the integral objective function in the

standard Ramsey model, we need a kind of space discounting. In our setting this

space discounting is ensured by population density. Mathematically speaking an

appropriate choice of U(c, x) is to take it rapidly decreasing with respect to the

second variable. That is, U(c, x), for any fixed c, defined as,

{U(c, ·) ∈ C(R)| ∀m ∈ Z+, |xmU(c, x)| ≤ Mm,∀x ∈ R,M > 0}.

A possible choice of U(c, x) checking the above mentioned characteristic is U(c, x) =

V (c) ρ′
2

e−ρ′|x|, where V (c) is strictly increasing and concave in c, and ρ′ > 0.

2.3 The Pontryagin conditions

The Pontryagin conditions corresponding to the control of a parabolic partial dif-

ferential equation are rigorously studied in Raymond and Zidani (1998, 2000) with

bounded open space and finite time, and reproduced in Brito (2004) for his particular

problem. Using exactly the same kind of variational methods, we can establish the

first-order conditions fitting our specific problem, which is given in the Appendix.

These conditions are:
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



∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
+ q(x, t) (A(x, t) f ′(k(x, t))− δ) = 0, (x, t) ∈ R× [0,∞),

q(x, t) = e−ρt ∂U(x, t)

∂c
, (x, t) ∈ R× [0,∞),

lim
t→∞

q(x, t) = 0, ∀x ∈ R,

lim
x→±∞

∂q(x, t)

∂x
= 0, ∀t ≥ 0.

(7)

The first equation is the expected adjoint equation, with q(x, t) playing the role

of the co-state variable. As in the standard Ramsey model, the latter is equal to

discounted marginal utility of consumption at the optimum, this should be true for

every x and t in our spatial extension. The three last limit conditions are respectively

the usual (time) transversality condition for infinite horizon discounted problems,

and the two (space) transversality conditions implied by the asymptotic constraints

on capital flow, limx→±∞
∂k(x,t)

∂x
= 0. Notice the adjoint equation is also (non-

surprisingly) a parabolic PDE. However in contrast to the state equation (6), which

is of the Cauchy type, the adjoint equation has no initial value q0(x) = q(x, 0), but

this is also a property of the adjoint equation in the standard non-spatial Ramsey

model. Finally, one should mention that generally the above conditions are not

only necessary, they are also sufficient under the typical concavity conditions like

our conditions on the utility and production function across space. See for example

Gozzi and Tessitore (1998). So that solving for optimal trajectories amounts in

principle to solving the following system:

11







∂k(x, t)

∂t
− ∂2k

∂x2
(x, t) = A(x, t)f (k(x, t))− c(x, t), (x, t) ∈ R× [0,∞),

∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= q(x, t) (δ − A(x, t) f ′(k(x, t))) , (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x), ∀x ∈ R,

q(x, t) = e−ρt ∂U(x, t)

∂c
, (x, t) ∈ R× [0,∞),

lim
t→∞

q(x, t) = 0, ∀x ∈ R,

lim
x→±∞

∂q(x, t)

∂x
= 0, ∀t ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ∈ R,

(8)

for given continuous k0(x). While establishing the existence of solutions to the

corresponding problem in the standard Ramsey (also referred to as the Hamiltonian

system or the Cass-Shell system) is far from obvious (see first proof in Gaines, 1976),

the task is uncomparably harder with the space dimension. As we will see in the

next section, there is a key difference with respect to the standard Ramsey model

which makes our elementary spatial extension amazingly more complicated.

3 The existence and uniqueness problem

We shall start with a preliminary result, then clarify the point outlined just above.

To this end we will introduce some new results on analytical solution of PDEs.
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3.1 A preliminary result

Consider the general parabolic PDE in variable u(x, t):

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= G (u(x, t), z(x, t)) , (9)

where G(·) is any given continuous function, and z(x, t) a forcing variable, with

initial continuous function u(x, 0) = u0(x) given.

Theorem 1 requires the following assumption on growth for x → ±∞ in order

to ensure uniqueness:

(A3) For any given finite T , if (x, t) ∈ R × (0, T ], there exist constants z0 > 0,

u0 > 0 and b < 1
4T

, such that, as x → ±∞

0 < z(x, t) ≤ z0e
b|x2|, 0 < u0(x) ≤ u0e

b|x2|.

Notice that investment in any location x and at any time t ∈ [0, T ],

i(x, t) = A(x, t)f(k(x, t))− δk(x, t)− c(x, t)

can be positive or negative. (A3) imposes that the “average accumulated” invest-

ment in the economy is nonnegative. Indeed, (A3) computes the average accumu-

lated investment at location x and time t assuming that it follows a normal law of

distribution with mean x and variation
√

t− τ .

Theorem 1 Let assumption (A3) hold and z(x, t) ∈ C2,1(R×(0, T )). Then problem
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(9) has a unique solution u ∈ C2,1(R× (0, T ]), given by

u(x, t) =

∫

R
Γ(x− y, t)u0(y)dy

+

∫ t

0

∫

R
Γ(x− y, t− τ) [G (u(y, τ), z(y, τ))] dydτ.

(10)

Moreover,

|u| ≤ Keβ|x|2 , as x → ±∞,

where K is a positive constant, which depends only on z0, u0, T , and β ≤ min{b, 1
4T
},

Γ(x, t) =





1

(4πt)
1
2

e−
x2

4t , t > 0,

0, t < 0.

Furthermore if z, u0 are bounded functions, then the above unique solution is also

bounded.

Proof: See the appendix.

Notice that (10) is a kind of explicit representation of the solution paths of the

typical parabolic PDE (9); it involves some “canonical” functions Γ(x, t) just like

the general characterization of the solutions to ordinary differential equation involve

exponential terms. Let us keep this solution representation in mind from now on.

It considerably helps clarifying the peculiarity of our problem.

For a backward parabolic equation with terminal condition,




L∗w = wt + wxx = H(w(x, t), h(x, t)), x ∈ R, t ∈ [0, T ),

w(x, T ) = w1(x), given, x ∈ R.

let v(x, t) = w(x, T − t), then we have similar results.
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Corollary 1 Suppose H(·) is a continuous function, and for any given finite T , if

(x, t) ∈ R × (0, T ], there exist some constants h1 > 0, w1 > 0 and b1 < 1
4T

, such

that, as x → ±∞

0 < h(x, t) ≤ h1e
b1|x2|, 0 < w1(x) ≤ w1e

b1|x2|.

Then the solution to problem (3.1) at (x, t) is

w(x, t) =

∫

R
Γ(x− y, T − t)φ(y)dy

−
∫ T

t

∫

R
Γ(x− y, T − τ)H(w(y, T + t− τ), h(y, T + t− τ))dydτ,

More refinements on the explicit representations of the solutions to parabolic

PDEs can be found in Wen and Zou (2000, 2002).

3.2 Why the control of parabolic PDEs hurts?

To make better the point, let us come back to the standard Ramsey model. The

adjoint equation is:

q′(t) + q(t) (A(t) f ′(k(t))− δ) = 0,

with obvious notations. Integrating the induced ordinary differential equation from

0 to t, one gets:

q(t) = q(0) e−
R t
0 (A(s)f ′(k(s))−δ) ds.

Obviously, q(0) is not known; however, there exists a one-to-one relationship between

q(0) and q(t) for a fixed capital trajectory. To any q(0) is associated a single q(t),

and to any q(t), one can only identify a unique compatible q(0) value. Typically,

q(0) is uniquely determined by the transversality condition limt→∞ q(t) = 0, which

establishes uniqueness of optimal trajectories in the Ramsey model. Unfortunately,
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the same trick does not work in the spatial extension.

Consider our adjoint equation:

∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
+ q(x, t) (A(x, t) f ′(k(x, t))− δ) = 0,

for a given capital and technology paths across time and space. By Theorem 1, if

q(x, 0) = q0(x) and A(x, t)f ′(k(x, t)) are bounded functions in the sense of Assump-

tion 3, then the solution to this PDE can be represented as:

q(x, t) =

∫

R
Γ(x− y, t)q0(y)dy

−
∫ t

0

∫

R
Γ(x− y, t− τ)q(y, τ) [ A(y, τ) f ′(k(y, τ))− δ] dydτ.

Because q0(x) enters an integral, we lose the one-to-one relationship between the

initial value- here q0(x)- and the whole trajectory q(x, t). If q0(x) were known, then

we can fix a unique path q(x, t), but the reverse is evidently WRONG. Unfortunately,

the transversality conditions will not be helpful to identify a unique q0(x) precisely

because of the integral representation displayed in Theorem 1. In particular, the

usual “economic” transversality condition limt→∞ q(x, t) = 0 will not help identifying

the “good” q0(x), nor the remaining space transversality conditions can solve the

problem, simply because the unknown q0(x) are inside the integrals and not outside.

In the language of the PDE literature, our problem is called “ill-posed”(see definition

in Hadamard J., 1923)8 : we cannot assure neither the existence, or the uniqueness

of solution, nor the continuous dependence on known variables and initial-boundary

conditions. Some “extra” information is needed to get rid of this. The other way to

surmount it is to take linear utility, which induce a degenerescent adjoint equation.

We try this strategy in the remaining sections of the paper.
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4 The linear spatial Ramsey model

From now on, we will concentrate on the linear Ramsey model, the special case with

linear utility. The objective function becomes:

max
c

∫ ∞

0

∫

R
c(x, t)ψ(x) e−ρtdx dt,

and in order to compare with standard results in non-spatial settings, we shall

add the usual irreversibility constraint, gross investment should be non-negative

at any date and for any location, that it i(x, t) = A(x, t)f (k(x, t)) − c(x, t) ≥
0. Moreover, we assume that piece-wise C2,1 function A(x, t) checks conditions in

Theorem 1 and 2. Further assumptions on the shape of preferences with respect to

x are required:

(A4) ψ(x) > 0, ρψ(x)− ψ′′(x) > 0 for all x ∈ R and
∫
R ψ(x) = 1.

As it will be clear in a few paragraphs, this condition is needed in our linear case

to assure the positivity of the capital trajectory. The corresponding optimal control

problem is:

max
c

∫ ∞

0

∫

R
c(x, t)ψ(x) e−ρtdxdt (11)
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subject to:





∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− c(x, t)− δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

0 ≤ c(x, t) ≤ A(x, t)f (k(x, t)) , x ∈ R, t ≥ 0,

lim
x→±∞

∂k(x, t)

∂x
= 0 t ≥ 0.

(12)

In the sequel of this section, we consider the optimal control problem (11)-(12),

the solution of which is given by Theorem 1 (when applied to systems of PDEs). In

this linear case, U(c, x) = c(x, t)ψ(x). Then from a direct calculation, we have

f ′ (k(x, t)) =
(ρ + δ)ψ(x)− ψ′′(x)

A(x, t)ψ(x)
, (13)

and the corresponding capital (which is an interior solution) is

ki(x, t) = (f ′)−1

(
(ρ + δ)ψ(x)− ψ′′(x)

A(x, t)ψ(x)

)
.

From (12), we have that

c(x, t) = A(x, t)f(k)− δk(x, t) + kxx(x, t)− kt(x, t) (14)

which gives the dynamics of the economy starting from the initial condition k0(x)

to the solution as (13). In the rest of this work, we consider a time independent

technology, i.e. A(x, t) = A(x). Then from (13), the interior solution for capital is

also time independent.
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The optimal consumption decision can lay in one of the following regimes:

c(x, t) =





0,

A(x)f(k(x, t)),

∈ (0, A(x)f(k(x, t))).

In the first case, consumption is zero and all the output is used for investment.

In the second one there is no investment, all output is consumed. These are the

two corner solutions for consumption. The third case covers the interior solution.

The next sub-sections are devoted to study the optimal dynamics, starting from

any corner regime. Particular attention will be paid to the conditions under which

the economy moves from the corner to the interior regimes (per location), as it is

traditional in the optimal control problems which are linear in the control variables.

In order to compare with the standard case, we recall very briefly its main dynamic

properties.

4.1 Recalling the linear Ramsey model without space

Consider a standard Ramsey model with linear utility function:

max
c

∫ ∞

0

c(t)e−ρtdt,

subject to

k̇ = Af(k(t))− δk(t)− c(t), k(0) given,

and the irreversibility constraint, 0 ≤ c(t) ≤ Af(k(t)). First order conditions
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give the interior solution for k as

ki = (f ′)−1

(
ρ + δ

A

)
.

Not surprisingly, the interior solution in the non-spatial cases coincides with the

interior solution of the spatial counterpart whence ψ(x) = 1, ∀x. Let us consider the

two traditionally induced corner solution cases. Let us sketch the usual reasonings.

Case 1. c = Af(k). The regime arises if initially Af ′(k) < δ + ρ. In such a

case, the solution for capital accumulation along the regime is explicit and is given

by k(t) = k(0)e−δt, which converges to zero, as t goes to infinity. Hence starting

from above, the capital path will reach the interior solution in a finite time, provided

the rate of capital depreciation is nonzero.

Case 2. c = 0. The regime arises if initially Af ′(k) > δ + ρ. Solving the law

of motion of capital with c = 0, one gets:

k(t) = k(0)e

∫ t

0

[
Af(k(s))− δk(s)

k(s)

]
ds

.

Obviously, whenever Af(k) − δk > 0 (positive net savings), the solution path

is increasing. But if Af ′(k(0)) > δ + ρ or equivalently Af ′(k(0)) − δ > ρ > 0,

then savings per capita net of depreciation (net savings hereafter), Af(k(t))− δk(t),

will be not only positive but increasing at the beginning of the corner regime if

Af(k(0))−δk(0) > 0. Therefore, the capital trajectory will start increasing provided

Af(k(0))−δk(0) > 0. However, the concavity of the production function will induce

a decreasing pattern of the marginal productivity of capital, so that at a finite date

T > 0, the interior solution is reached, that it is Af ′(k(T )) − δ = ρ. Note that

the capital path cannot be ”stuck” at a stationary solution of the corresponding

corner regime before reaching the interior solution. Such a stationary solution,
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ks, checks: Af(ks)
ks = δ > Af ′(ks) by concavity. Since the interior solution checks

Af ′(ki) = δ + ρ, we have f ′(ki) > f ′(ks), thus ki < ks again by concavity. In the

other case, Af(k(0)) − δk(0) < 0, and capital goes down at the beginning of the

corner regime, which leads to Af ′(k(t)) − δ < ρ by the same concavity argument.

That is a contradiction to the assumption, therefore in this case, c = 0 is not a

solution.

We are now ready to get to the spatial case. We shall see how the space dimension

enriches the properties mentioned just above.

4.2 The dynamics of the spatial linear Ramsey model

We first introduce some preliminary important definitions, which will be interpreted

in economic terms hereafter. Precisely, we define the steady state (or stationary)

solutions and the upper and lower solutions of the steady state problems. The latter

concept is extremely useful in the literature of PDEs.

The steady state of problem (11)-(12) is defined as:

(Ps)





−∂2k(x)

∂x2
= A(x)f (k(x))− c(x)− δk(x), x ∈ R,

lim
x→±∞

∂k(x)

∂x
= 0.

Now we recall the mathematical definition of upper and lower solutions to Ps.

Definition 2 A function ku(x) is an upper solution of Ps if it satisfies that

−∂2k(x)

∂x2
≥ A(x)f (k(x))− c(x)− δk(x), x ∈ R.

Similarly, we say that a function kl(x, t) is a lower solution of problem Ps if the

inequality above is verified with sign ≤.
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Notice that the upper and lower solutions can be properly interpreted in economic

terms. In order to compare with the non-spatial Ramsey model, let us use the same

terminology. Notice that the right hand side of the inequality could be interpreted

as the net savings at location x, while the left hand side measures capital flows at

x. Integrating the inequality between two locations a and b, say a < b, one can infer

that along an upper solution, net savings in the region [a, b] are lower than or equal

to the amount of capital flowing out of this region. Consequently, the upper solution

concept should recover the case of non-increasing patterns of capital accumulations.

Lower solutions fit just the opposite case.

With this proviso in mind, we next study the convergence from below and from

above the interior solution, assuming that all locations start either below or above

their interior regime. This case is the simplest one and it already allows to capture

the main idea of the paper, that is, the spatial dynamics induced by perfect capital

mobility enrich considerably the asymptotic behavior of the Ramsey model9. We

shall study the case where the initial capital stock in the whole space is typically

lower (resp. higher) than the interior value, which corresponds to the case of a “too”

high (resp. low) return to capital.

4.2.1 High marginal productivity case

Suppose that at t = 0,

f ′(k0(x)) >
(ρ + δ)ψ(x)− ψ′′(x)

A(x)ψ(x)
, (15)

and that

−(k0(x))xx ≤ A(x)f(k0(x))− δk0(x), ∀x ∈ R. (16)

That is, initially the marginal productivity of capital is higher than the marginal
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cost. As a result, it is optimal to keep on investing until the capital stock satisfies the

optimal rule (13) if possible, and c(x) = 0, ∀x ∈ R. By assumption (A1), f ′′(k) < 0,

so in this case

k0(x) < ki(x), ∀x ∈ R.

Hence the dynamics of the state equation are





∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ≥ 0.

Condition (16) actually ensures that k0(x) is a lower solution of the stationary

equation,

−k(x)xx = A(x)f(k(x))− δk(x), ∀x ∈ R. (17)

The dynamic properties of the model heavily rely on condition (16), as the

following theorem shows.

Theorem 2 Suppose (A1), (A2) hold and A(·) is a bounded function. Moreover we

assume that Af ′(k) ≥ δ for any feasible function k.

(a) If k0 is a lower solution of Ps, then the solution path for capital is nondecreasing

in t for any location along the corner regime, that is

k0(x) ≤ k(x, t), ∀x ∈ R, ∀t ≥ 0.

Further, if k0 is not a solution to (17), then k(x, t) is strictly increasing in t.

(b) If k0 is an upper solution of Ps, then the solution the solution path for capital
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is nonincreasing in t for any location along the corner regime, that is

k0(x) ≥ k(x, t), ∀x ∈ R, ∀t ≥ 0.

Further, if k0 is not a solution to (17), then k(x, t) is strictly decreasing in t.

Proof. See the appendix.

Theorem 2 features the different dynamic outcomes, and should be compared

with the typical outcomes in the non-spatial counterpart (our Section 4.1). Starting

below the interior solution, the economy may or may not reach the interior solution.

If k0(x) is a lower solution, then by Theorem 2-(a), the capital patterns are non-

decreasing. In the special case k(x, t) = k0(x) = k̄(x), ∀t . Hence, k(x, t) < ki(x)

forever. However, if k0(x) checks (16) and is not a solution to (17), then the capital

paths will be strictly increasing at any location, and may converge to the interior

regime at a finite time T1. Of course, convergence is not guaranteed: increasing

patterns of capital may be “stuck” at a solution of (17) before convergence. Yet

starting at a lower solution is a possible way to get to the interior solution. This is

not surprising at all given our economic interpretation of the lower solution concept,

which features the cases where net savings are larger than or equal to capital flowing

out of any location x. If k0(x) checks (16) with strict inequality, then net savings are

strictly larger than capital outflows everywhere, and capital should grow, possibly

(not surely) reaching the interior solution after a while. The reverse happens when

the initial condition k0(x) is an upper solution of Ps. In such a case, convergence to

the interior solution is impossible.

So far, we have exhibited a kind of generalization of the standard non-spatial

linear Ramsey model properties. In the benchmark case (see Section 4.1), when the

economy starts with regime c = 0, it converges to the interior solution if and only

if net savings (with c = 0) are strictly positive initially. With space, this property

24



may arise under the condition that initially net savings (with c = 0) at any location

exceed capital outflows. Nonetheless, a huge difference with the non-spatial case

emerges here: even if the initial net savings are strictly positive, that it is even if

the initial capital profile is a lower solution, there is no guarantee that the resulting

increasing patterns reach the interior solution. As mentioned just above, this is

due to the fact that these capital trajectories may be “stuck” at some stationary

solution of the corresponding corner regime. Such a possibility does not exist in the

non-spatial case.

Any way, this is good news: of course, the spatial model has much trickier

properties, much richer dynamics thanks to the capital mobility engine. We shall

address the remaining issues numerically in the last section. In particular, we shall

exhibit cases in which capital trajectories are increasing (because the initial capital

profile is a lower solution) but do not get to the interior solution. Before getting

to this numerical section, we examine the case of an initially “too” low marginal

productivity of capital, giving rise to the other corner regime.

4.2.2 Low marginal productivity case

Suppose initially that k0(x) satisfies

f ′(k0(x)) <
(ρ + δ)ψ(x)− ψ′′(x)

A(x)ψ(x)
.

Productivity in this economy is too low, the marginal cost is initially higher than

marginal productivity. As a result, the economy stops investing at any location

and consume all the output of the location until (13) holds (if possible): c(x, t) =

A(x)f(k(x, t)). By the concavity of the production function, we have that actually

k0(x) > ki(x), ∀x ∈ R.
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Then, the capital dynamics are described by:





∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= −δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ≥ 0.

(18)

Before stating the main convergence theorem, we first study a special case, with

no capital depreciation rate, δ = 0. We have the following result.

Theorem 3 Suppose (A1), (A2) and A(·) is a bounded function. Furthermore, let

δ = 0.

(a) Then the solution path for capital along the corner regime c(x, t) = A(x)f(k(x, t)),

is non-increasing and

k0(x) ≥ k(x, t), ∀x ∈ R, ∀t ≥ 0.

(b) If k0(x) is an upper solution but not a steady state solution, then k(x, t) is

strictly decreasing in t.

(c) If k0(x) is a lower but not a steady state solution, then k(x, t) is strictly in-

creasing in t, and convergence to the interior solution is impossible.

Proof: This theorem can be proved following the same reasoning as in the proof

of Theorem 2.

Strictly speaking, Theorem 3 is not surprising: once removed capital deprecia-

tion, the unique engine of capital stock variation is capital mobility. In the non-

spatial case and in such a corner situation, the state equation degenerates into k̇ = 0,

therefore inducing that the capital trajectory will stick to the initial condition k(0)
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forever. In the spatial case with capital mobility, the capital stock can still change

over time, and the outcome depends, as in the initial high marginal productivity

case, on whether initial net savings are lower or larger than capital outflows.

What happens if capital depreciation is allowed? With nonzero capital depreci-

ation, things are quite different. Let u(x, t) = k(x, t)eδt, after simple calculations,

we obtain 



ut − uxx = (kt − kxx)e
δt + δkeδt = 0,

u(x, 0) = k0(x).

So the theoretical part of the solution will not change. However notice that

k(x, t) = u(x, t)e−δt is the product of two terms: a bounded term u(x, t) (by Theorem

1 with function G(·) identically zero) and a second term converging to zero as t goes

to infinity.

Furthermore, the unique solution to the steady state of (18) is k(x) ≡ 0. This

implies that the solution trajectory will not be “stuck” at a steady state solution

in its decreasing path towards the interior solution. Then, there exists a point in

time, t1, such that, k(x, t1) equals the interior solution. At this point, consumption

changes to its interior value. This means that from t1 onwards, the solution equals

the interior solution, i.e. capital converges to the interior solution.

To conclude the above analysis, we write it as the main convergence result.

Theorem 4 Suppose (A1), (A2) and A(·) is a bounded function. In the case of low

marginal productivity, for any initial capital distribution, the existence of non-zero

depreciation ensures convergence to the interior solution in finite time.

Therefore, in such a corner case, capital depreciation is stronger than capital

mobility for all initial capital profiles, which is similar to the non-spatial Ramsey

set-up. Of course, this property does not hold in the other corner regime: when
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the initial marginal productivity of capital is high, investment is no longer zero,

and thus the capital stock moves pushed by two engines: capital mobility across

location and nonzero investment per location. The conjunction of these two engines

may dominate the capital depreciation engine as featured in Theorem 2 (a).

5 Numerical experiments

We would like to illustrate the richness of this model with respect to the non-spatial

Ramsey model. We provide two examples of initial distributions of capital in high

marginal productivity economies that do not attain the interior solution.

Table 1 presents the parameter values that describe our scenario. The density

function φ(·) has been adapted so that population size is equal to 1 in the simulation

space [−100, 100].

f(k(x, t)) = k(x, t)α α = 1/3
ψ(x) = ae−φ|x| φ = 0.5, a = 0.25
δ = 0.3
ρ = 0.03
A = 10

Table 1: Functional specifications and parameter values for the numerical exercise

With these parameter values, the interior solution is spatially homogenous:

ki(x) = (f ′)−1

(
ρψ(x)− ψ′′(x)

Aψ(x)

)
=

(
Aα

ρ + δ − φ2

) 1
1−α

' 268.96.

Though the steady state problem Ps with c(x) = 0 does not have a unique

solution, it has a unique non-trivial spatially homogenous solution:

ks(x) =

(
A

δ

) 1
1−α

' 192.45.
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It is very important for the numerical experiments to notice that ks(x) < ki(x),

∀x ∈ R.

Example 1:

We would like to illustrate the case of an economy initially endowed with a

physical capital distribution k0 which lies below the interior solution and it is a

lower solution to Ps. The solution trajectory to this problem does not converge to

the interior solution but gets “stuck” at a steady state solution. Let k0 be:

k0(x) =





1, x ≤ 1,

x, 1 < x ≤ 5,

5, x > 5.

One can readily see in the simulation graph that the solution is effectively in-

creasing (Theorem 2 (a)) and that it converges to the spatially homogenous steady

state solution (ks(x) = 192.45), never reaching the interior solution (see figure 1).
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Figure 1: k0 < ks < ki, k0 lower solution

Example 2:

On the other hand, we study in this example a high marginal productivity econ-

omy which is endowed with an initial distribution above the steady state and very

close to the interior solution:
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k0(x) = 260.

Moreover, the initial distribution is an upper solution to Ps, with ks < k0 < ki.

According to Theorem 2 (b), the solution trajectory is decreasing. What can be

checked with the numerical exercise is that the spatially homogenous steady state

solution is attained (see figure 2).
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Figure 2: ks < k0 < ki, k0 upper solution

Notice that our results heavily rely on the parameter set. Had we chosen a

population density function as φ(x) = 0.125e−0.25|x|, we would have ki < ks. In this

case, any economy endowed with an initial distribution of capital that is a lower

solution to Ps and k0 < ki, converges to the interior solution.

6 Conclusion

In this paper, we have tried to formulate a prototype of spatial Ramsey model

with continuous space. In particular, we have departed from the non-Benthamian

Ramsey model of Brito (2004) by introducing spatial discounting. We have studied

the induced dynamic problem and shown why the optimal control of the resulting

parabolic partial differential equations finally gives rise to an ill-posed problem. Our
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detailed analysis of the linear Ramsey model, which is clearly a way to escape from

the ill-posed problem, has the advantage to highlight the tremendous complexity of

spatial dynamics even in this linear case.

Two main conclusions can be drawn from our work: first of all, the spatial

dimension in a Ramsey framework clearly “adds something” to the story of the neo-

classical growth models, with much less trivial asymptotic results and convergence

properties, and more case studies, depending on the relative strength of several en-

gines, among them the spatial “guest star”: capital mobility. Second, there is still

a tremendous effort to do in order to understand completely what is going on in

these models. In particular, we should try to reach a much better understanding of

the structure of the stationary solutions. In this respect, developing new analytical

and/or computational tools sounds as a minimal prior condition. These technical

tasks should be undertaken before tackling more interesting economic extensions of

the model, notably migrations.
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7 Appendix

7.1 Proof of (4)

Let us suppose that

∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
6= A(x, t)f (k(x, t))− δk(x, t)) + c(x, t), ∀(x, t),

in some interval [a, b] ⊂ X with

∫ b

a

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− A(x, t)f(k(x, t)− δk(x, t)) + c(x, t)

)
ψ(x)dx = 0.

Putting these two conditions together, it implies that there exists at least a subin-

terval [a1, b1] ⊂ [a, b] such that

∫ b1

a1

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− A(x, t)f(k(x, t)− δk(x, t)) + c(x, t)

)
ψ(x)dx > 0.

(19)

However, we know that

∫

X

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− A(x, t)f(k(x, t)− δk(x, t)) + c(x, t)

)
ψ(x)dx = 0,

for any closed region X. Hence, in particular it is also true for [a1, b1], which is

in contradiction with (19) and proves that ∂k(x,t)
∂t

− ∂2k(x,t)
∂x2 = A(x, t)f (k(x, t)) −

δk(x, t)) + c(x, t), ∀(x, t). ♦

7.2 Obtain first order condition

Suppose that (c?, k?) is one optimal solution of the optimal control problem and

consider the perturbed path (c, k), such that, for any arbitrary functions p, h, and
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ε > 0,

p, h : R× R+ → R,

and

c = c? + εh, k = k? + εp.

The corresponding value function V is defined as

V =

∫ ∞

0

∫

R
U(c(x, t), x)e−ρtdtdx

−
∫ ∞

0

∫

R
q(x, t)

(
∂k(x, t)

∂t
− ∂2k

∂x2
(x, t)− A(x, t)f (k(x, t)) + c(x, t)

)
dx dt.

As usual, to achieve the maximum of V , the first order condition ∂V
∂ε

= 0 should

hold.

Let us study first:

∫ ∞

0

∫

R
q(x, t)

∂k(x, t)

∂t
dxdt, and

∫ ∞

0

∫

R
q(x, t)

∂2k(x, t)

∂x2
dxdt.

Integration by parts yields

∫ ∞

0

∫

R
q(x, t)

∂k(x, t)

∂t
dxdt =

∫

R
kq|∞0 dx−

∫ ∞

0

∫

R
k
∂q

∂t
dxdt,

and ∫ ∞

0

∫

R
q(x, t)

∂2k(x, t)

∂x2
dxdt =

∫ ∞

0

q
∂k

∂x
|∞−∞dt−

∫ ∞

0

∫

R

∂q

∂x

∂k

∂x
=

=

∫ ∞

0

q
∂k

∂x
|∞−∞dt−

∫ ∞

0

k
∂q

∂x
|∞−∞ +

∫ ∞

0

∫

R
k

∂2q

∂x2
.

As a consequence,

∂V

∂ε
=

∫ ∞

0

∫

R

(
ψ(x)e−ρt − q

)
hdx dt−
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−
∫ ∞

0

∫

R
p(x, t)

(
−∂q

∂t
− ∂2q

∂x2

)
dxdt−

∫

R
p(x, t)q(x, t)|∞0 dx+

−
∫ ∞

0

p
∂q

∂x
|∞−∞ +

∫ ∞

0

∫

R
qpAf ′ (k(x, t)) dx dt.

Then, ∂V
∂ε

= 0, provided

q(x, t) = e−ρtU ′
1 (c, x) ,

and for admissible c(x, t) and k(x, t) in C2,1(R× [0,∞)),

(Q)





∂q

∂t
+

∂2q

∂x2
+ q(x, t)Af ′ (k(x, t)) = 0,

q(x, t) = e−ρtU ′
1 (c, x) ,

lim
t→∞

q(x, t) = 0,

lim
x→∞

∂q

∂x
= lim

x→−∞
∂q

∂x
= 0. ♦

7.3 Proof of Theorem 1

(1) Let (x, t) ∈ R × (0, T ]. Define a sequence {u(n)}, (n ≥ 1) successively from the

iteration process




Lu(n) = u

(n)
t − u

(n)
xx = G(u(n−1)(x, t), z(x, t)), in R× (0, T ],

u(n)(x, 0) = u0(x), in R,

with u(0)(x, t) = u0(x) and Gu(n−1)(x, t), z(x, t)) is some known function of x and t.

If assumptions (A1)- (A3) hold, then this sequence is well defined. Due to Theorem

7.1.1 in Pao (1992), a unique solution sequence {u(n)} ∈ C2,1(R× (0, T ]) exists and
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it is given by

u(n)(x, t) =
∫
R Γ(x− y, t)u0(y)dy

+

∫ t

0

∫

R
Γ(x− y, t− τ)

[
G(u(n−1)(y, τ), z(y, τ))

]
dydτ,

(20)

where Γ(x, t) is the fundamental solution to the parabolic operator L:

Γ(x, t) =





1

(4πt)
1
2

e−
x2

4t , t > 0,

0, t < 0.

See for example, pages 261–265, in Ladyzenskaja, Solonnikov and Ural’ceva

(1968) or page 14 in Frideman (1983). Furthermore, there exists some positive

constants M and β such that the solution satisfies the growth condition for each n

|u(n)| ≤ Meρ|x|2 , as x → ±∞,

Notice that the sequence starting from u0, and then M does not depend on n. Hence,

we obtain that for t ∈ (0, T ], for any x, there exist an estimate for the solution

|u(n)| ≤ M ′eρ′|x|2 ,

for some positive constants M ′ and ρ′.

Then there is a subsequence, u(nj), which converges to a function ũ ∈ C2,1(R ×
(0, T ]), and satisfies

|ũ| ≤ M ′′eρ′′|x|2 , ∀x ∈ R,

for some positive constants M ′′ and ρ′′.

Due to the uniqueness of the solution to the linear equation, one can prove that
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the whole sequence converges to ũ. In (20), taking the limit when n →∞ on both

sides, we obtain that

ũ(x, t) =
∫
R Γ(x− y, t)u0(y)dy

+

∫ t

0

∫

R
Γ(x− y, t− τ) [G(ũ(y, τ), z(y, τ))] dydτ.

By the fundamental solution result, ũ is the solution to problem (9) for (x, t) ∈
R× (0, T ] and it satisfies the growth condition

0 < u ≤ Keβ|x|2 , as x ∈ R,

for some constant K and β = ρ′′. ♦

7.4 Proof of Theorem 2.

(a) Let w(x, t) = k(x, t)− k0(x), then wt(x, t) = kt(x, t) and wxx(x, t) = kxx(x, t)−
(k0(x))xx. The state equation

wt(x, t)− wxx(x, t) = kt(x, t)− kxx(x, t) + (k0(x))xx ≥

≥ A(x)f(k(x, t))− δk(x, t)− A(x)f(k0(x)) + δk0(x) =

= A(x)f ′(η(x, t)) (k(x, t)− k0(x))− δk(x, t) + δk0(x) =

= (A(x)f ′(η(x, t))− δ) (k(x, t)− k0(x)) ,

where η(x, t) is a function between k(x, t) and k0(x), and the inequality comes

from assuming that k0(x) checks (16). Besides, w(x, 0) = v(x, 0)− k0(x) = 0.

Notice that we can write it as:
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wt(x, t)− wxx(x, t) ≥ (A(x)f ′(η(x, t))− δ) w(x, t), (21)

where the right hand side is linear in w(., .) and A(x)f ′(η(x, t))− δ is bounded.

We can therefore apply Lemma 7.2.1 in Pao since w0(x) = 0. This implies that

w(x, t) ≥ 0, ∀t ≥ 0, ∀x ∈ R.

As a result, k(x, t) ≥ k0(x). More precisely, k(x, t) > k0(x) unless k(x, t) ≡ k0(x).

Now, we prove that k(x, t) is nondecreasing in t. For any fixed constant ρ > 0,

denote kρ(x, t) = k(x, t + ρ) consider function v(x, t) = k(x, t + ρ) − k(x, t). It is

easy to check that v(x, t) satisfies

vt(x, t)− vxx(x, t) = A(x)f(kρ(x, t))− δkρ(x, t)− A(x)f(k(x, t)) + δk(x, t) =

= (A(x)f ′(ζ(x, t))− δ) v(x, t), ∀t ≥ 0, ∀x ∈ R,

and

v(x, 0) = k(x, ρ)− k0(x) ≥ 0, ∀x ∈ R,

where ζ lays between kρ and k, and v(x, 0) ≥ 0 following the previous result.

Again by a comparison theorem for linear parabolic equations and the fact that

v is bounded as |x| → ∞:

v(x, t) ≥ 0, ∀t ≥ 0, ∀x ∈ R.

That is, for any constant ρ:

k(x, t + ρ) ≥ k(x, t), ∀t ≥ 0, ∀x ∈ R,
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so that k(x, t) is an increasing function.

(b)We obtain the results using the same argument as in (a), putting w(x, t) =

k0(x)− k(x, t). ♦
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Notes

1Depreciation rate of capital is homogenous in time t, space x and capital level

k.

2We could assume that there exist institutional barriers to capital flows (see Ten

Raa, 1986, and Puu, 1982). If we assume that these barriers are independent of

capital k and consumption c, we obtain a linear equation with coefficients in front

of the Laplacean operator. After some affine transformations, results in section 2.2

would apply to this problem. Otherwise, if the barriers are functions of k and/or c,

we face nonlinear problems, which are not considered in this work.

3 If we consider transportation costs in the form of delays, then we would obtain

a differential-difference problem. These problems are difficult to handle. Therefore,

we could consider a transportation cost proportional to output (the iceberg trans-

portation cost). In this case results in section 2.2 apply. In a more general case with

space velocity, we would have to deal with a non-local problem which is out of the

scope of this paper.

4 Equation (6.3.13), Page159, Issard and Liossatos (1979) obtain the same law of

motion of capital by using a slightly different approach in a finite continuous space

and finite time space.

5By ”without capital flow” we mean that lim
x→±∞

∂k(x, t)

∂x
= a, where a is a con-

stant. With a simple transformation and without loss of generality, we can assume

a = 0. In this case, there is no surplus after consumption, so there is no trade.

This is called the Neumann’s problem. Equivalently, we can impose the Dirichlet

condition, that is, lim
x→±∞

k(x, t) = b(t). It states that when a household is far from

the economic center, its stock of capital does not depend on trade. Except for the

Pontryagin conditions, results with either assumptions are not essentially different.
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6 Function space C2,1(R× [0,∞)) is defined a class of functions which are second

order continuously differentiable with respect to its variable and first order contin-

uously differentiable with its second variable.

7A solution to problem (6) in C2,1(R× [0,∞)) is called classic solution.

8See also Page 7, Evans (1998) for ”well-posed” definition.

9The working paper version of this paper, available upon request, considers the

more complicated case where space is partitioned into two half-spaces, one above

the corresponding interior regime and the other below. Such an exercise does not

bring any further economic value-added with respect to the simple and transparent

cases treated in this version of the paper.
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